Weakly s-semipermutable subgroups of finite groups

Yong XU, Xianhua LI

PDF(213 KB)
PDF(213 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (1) : 161-175. DOI: 10.1007/s11464-010-0081-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Weakly s-semipermutable subgroups of finite groups

Author information +
History +

Abstract

In this paper, we introduce the concept of weakly s-semipermutable subgroups. Let G be a finite group. Using the condition that the minimal subgroups or subgroups of order p2 of a given Sylow p-subgroup of G are weakly s-semipermutable in G, we give a criterion for p-nilpotency of G and get some results about formation.

Keywords

weakly s-semipermutable subgroup / p-nilpotency / formation

Cite this article

Download citation ▾
Yong XU, Xianhua LI. Weakly s-semipermutable subgroups of finite groups. Front Math Chin, 2011, 6(1): 161‒175 https://doi.org/10.1007/s11464-010-0081-x

References

[1]
Ballester-Bolinches A. ℋ-normalizers and local definitions of saturated formations of finite groups. Israel J Math, 1989, 67: 312-326
CrossRef Google scholar
[2]
Ballester-Bolinches A, Pedraza-Aguilera M C. On minimal subgroups of finite groups. Acta Math Hungar, 1996, 73: 335-342
CrossRef Google scholar
[3]
Chen Zhongmu. Inner Outer Σ-Group and Minimal Non Σ-Group.Chongqing: Southeast Normal University Press, 1988 (in Chinese)
[4]
Chen Zhongmu. On a theorem of Srinivasan. J of Southwest Normal Univ (Nat Sci), 1987, 12(1): 1-4
[5]
David M B. The subgroups of PSL(3, q) for odd q. Trans Amer Math Soc, 1967, 127: 150-178
CrossRef Google scholar
[6]
Doerk K, Hawkes T. Finite Solvable Groups.Berlin: Walter de Gruyter, 1992 Weakly s-semipermutable subgroups of finite groups 175
[7]
Guo W. The Theory of Classes of Groups.Beijing, New York: Science Press-Kluwer Academic Publishers, 2000
[8]
Guo X, Shum K P. Cover-avoidance properties and the structure of finite groups. J Pure Appl Algebra, 2003, 181: 297-308
CrossRef Google scholar
[9]
Huppert B. Endliche Gruppen I.New York: Springer, 1967
[10]
Huppert B, Blackburn N. Finite Groups III. Berlin-New York: Springer-Verlag, 1982
[11]
Kegel O H. Sylow-Gruppen and Subnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205-211
CrossRef Google scholar
[12]
Li X, Yang Y. Semi CAP-subgroups and the structure of finite groups. Acta Math Sinica, 2008, 51(6): 1181-1187
[13]
Li Y, Wang Y, Wei H. On p-nilpotency of finite groups with some subgroups π-quasinormally embedded. Acta Math Hungar, 2005, 108(4): 283-298
CrossRef Google scholar
[14]
Skiba A N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315(1): 192-209
CrossRef Google scholar
[15]
Wang Yanming. c-normality of groups and its properties. J Algebra, 1996, 180: 954-965
CrossRef Google scholar
[16]
Zhang Q, Wang L. The influence of s-semipermutable properties of subgroups on the structure of finite groups. Acta Mathematica Sinica, 2005, 48(1): 81-88

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(213 KB)

Accesses

Citations

Detail

Sections
Recommended

/