Frontiers of Mathematics in China >
Stability of almost submetries
Received date: 13 May 2010
Accepted date: 20 Jun 2010
Published date: 01 Feb 2011
Copyright
In this paper, we consider a triple of Gromov-Hausdorff convergence: , and maps fi : Ai → Bi converge to a map f : A → B, where Ai are compact Alexandrov n-spaces and Bi are compact Riemannian m-manifolds such that the curvature, diameter and volume are suitably bounded (non-collapsing). When f is a submetry, we give a necessary and sufficient condition for the sequence to be stable, that is, for i large, there are homeomorphisms, Ψi : Ai → A, Φi : Bi → B such that f ◦ Ψi = Φi ◦ fi. When f is an ϵ-submetry with ϵ>0, we obtain a sufficient condition for the stability in the case that Ai are Riemannian manifolds. Our results generalize the stability/finiteness results on fiber bundles by Riemannian submersions and by submetries.
Xiaochun RONG , Shicheng XU . Stability of almost submetries[J]. Frontiers of Mathematics in China, 2011 , 6(1) : 137 -154 . DOI: 10.1007/s11464-010-0076-7
1 |
Berestovskii V N, Guijarro L. A metric characterization of Riemannian submersions. Ann Global Anal Geom, 2000, 18(6): 577-588
|
2 |
Burago Y, Gromov M, Perel’man G. A.D. Alexandrov spaces with curvature bounded below. Uspekhi Mat Nauk, 1992, 47: 3-51
|
3 |
Cheeger J. Finiteness theorems for Riemannian manifolds. Amer J Math, 1970, 92: 61-75
|
4 |
Cheeger J, Fukaya K, Gromov M. Nilpotent structures and invariant metrics on collapsed manifolds. J Amer Math Soc, 1992, 5: 327-372
|
5 |
Fukaya K. Hausdorff convergence of Riemannian manifolds and its applications. In: Recent Topics in Differential and Analytic Geometry. Adv Stud Pure Math, 18-I.Boston: Academic Press, 1990, 143-238
|
6 |
Green R E, Wu H. Lipschitz convergence of Riemannian manifolds. Pacific J Math, 1988, 131: 119-141
|
7 |
Gromov M, Lafontaine J, Pansu P. Structures metriques pour les varietes riemannienes. Paris: CedicFernand, 1981
|
8 |
Grove K, Petersen P. A radius sphere theorem. Invent Math, 1993, 112: 577-583
|
9 |
Kapovitch V. Perelman’s stability theorem. In: Surveys in Differential Geometry, XI.Somerville: Int Press, 2007, 103-136
|
10 |
Perel’man G. Alexandrov spaces with curvatures bounded from below II. Preprint, 1991
|
11 |
Perel’man G. Elements of Morse theory on Aleksandrov spaces. St Petersburg Math J, 1993, 5: 205-213
|
12 |
Peters S. Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds. J Reine Angew Math, 1984, 349: 77-82
|
13 |
Petersen P. Riemannian Geometry. Grad Texts in Math, Vol 171.Berlin: Springer- Verlag, 2006
|
14 |
Petrunin A. Semiconcave functions in Alexandrov’s geometry. In: Cheeger J, Grove K, eds. Surveys in Differential Geometry, Vol XI.Somerville: Int Press, 2007, 137-202
|
15 |
Rong X. Convergence and collapsing theorems in Riemannian geometry. In: Ji L Z, Li P, Schoen R, Simon L, eds. Handbook of Geometric Analysis, Vol II.Beijing-Boston: Higher Education Press and International Press, 2010, 193-298
|
16 |
Tapp K. Bounded Riemannian submersions. Indiana Univ Math J, 2000, 49(2): 637-654
|
17 |
Tapp K. Finiteness theorems for submersions and souls. Proc Amer Math Soc, 2002, 130(6): 1809-1817
|
18 |
Walczak P. A finiteness theorem for Riemannian submersions. Ann Polon Math, 1992, 57: 283-290
|
19 |
Walczak P. Erratum to the paper A finiteness theorem for Riemannian submersions. Ann Polon Math, 1993, 58: 319
|
20 |
Wu J Y. A parametrized geometric finiteness theorem. Indiana Univ Math J, 1996, 45(2): 511-528
|
21 |
Yamaguchi T. Collapsing and pinching under a lower curvature bound. Ann of Math, 1991, 133: 317-357
|
22 |
Yamaguchi T. A convergence theorem in the geometry of Alexandrov spaces. Actes de la Table Ronde de Geometrie Differential (Luminy, 1992), Semin Congr, 1. 1996, 601-642
|
/
〈 | 〉 |