Stability of almost submetries

Xiaochun Rong , Shicheng Xu

Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 137 -154.

PDF (266KB)
Front. Math. China ›› 2010, Vol. 6 ›› Issue (1) : 137 -154. DOI: 10.1007/s11464-010-0076-7
Research Article
RESEARCH ARTICLE

Stability of almost submetries

Author information +
History +
PDF (266KB)

Abstract

In this paper, we consider a triple of Gromov-Hausdorff convergence: $A_i ^{\underrightarrow {d_{GH} }} A,B_i ^{\underrightarrow {d_{GH} }} A$ and maps f i: A iB i converge to a map f: AB, where A i are compact Alexandrov n-spaces and B i are compact Riemannian m-manifolds such that the curvature, diameter and volume are suitably bounded (non-collapsing). When f is a submetry, we give a necessary and sufficient condition for the sequence to be stable, that is, for i large, there are homeomorphisms, Ψ i: A iA, Φ i: B iB such that f ∘ Ψ i = Φ if i. When f is an ε-submetry with ε > 0, we obtain a sufficient condition for the stability in the case that A i are Riemannian manifolds. Our results generalize the stability/finiteness results on fiber bundles by Riemannian submersions and by submetries.

Keywords

Gromov-Hausdorff convergence / Alexandrov space / stability / fiber bundle / (almost) submetry

Cite this article

Download citation ▾
Xiaochun Rong, Shicheng Xu. Stability of almost submetries. Front. Math. China, 2010, 6(1): 137-154 DOI:10.1007/s11464-010-0076-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berestovskii V. N., Guijarro L. A metric characterization of Riemannian submersions. Ann Global Anal Geom, 2000, 18 6 577-588

[2]

Burago Y., Gromov M., Perel’man G. A.D. Alexandrov spaces with curvature bounded below. Uspekhi Mat Nauk, 1992, 47, 3-51

[3]

Cheeger J. Finiteness theorems for Riemannian manifolds. Amer J Math, 1970, 92, 61-75

[4]

Cheeger J., Fukaya K., Gromov M. Nilpotent structures and invariant metrics on collapsed manifolds. J Amer Math Soc, 1992, 5, 327-372

[5]

Fukaya K. Hausdorff convergence of Riemannian manifolds and its applications. Recent Topics in Differential and Analytic Geometry, 1990, Boston: Academic Press 143-238

[6]

Green R. E., Wu H. Lipschitz convergence of Riemannian manifolds. Pacific J Math, 1988, 131, 119-141

[7]

Gromov M., Lafontaine J., Pansu P. Structures metriques pour les varietes riemannienes, 1981, Paris: CedicFernand.

[8]

Grove K., Petersen P. A radius sphere theorem. Invent Math, 1993, 112, 577-583

[9]

Kapovitch V. Perelman’s stability theorem. Surveys in Differential Geometry, 2007, Somerville: Int Press 103-136

[10]

Perel’man G. Alexandrov spaces with curvatures bounded from below II. Preprint, 1991

[11]

Perel’man G. Elements of Morse theory on Aleksandrov spaces. St Petersburg Math J, 1993, 5, 205-213

[12]

Peters S. Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds. J Reine Angew Math, 1984, 349, 77-82

[13]

Petersen P. Riemannian Geometry. Grad Texts in Math, 2006, Berlin: Springer-Verlag.

[14]

Petrunin A. Cheeger J., Grove K. Semiconcave functions in Alexandrov’s geometry. Surveys in Differential Geometry, 2007, Somerville: Int Press 137-202

[15]

Rong X. Ji L. Z., Li P., Schoen R., Simon L. Convergence and collapsing theorems in Riemannian geometry. Handbook of Geometric Analysis, 2010, Beijing-Boston: Higher Education Press and International Press 193-298

[16]

Tapp K. Bounded Riemannian submersions. Indiana Univ Math J, 2000, 49 2 637-654

[17]

Tapp K. Finiteness theorems for submersions and souls. Proc Amer Math Soc, 2002, 130 6 1809-1817

[18]

Walczak P. A finiteness theorem for Riemannian submersions. Ann Polon Math, 1992, 57, 283-290

[19]

Walczak P. Erratum to the paper A finiteness theorem for Riemannian submersions. Ann Polon Math, 1993, 58, 319

[20]

Wu J. Y. A parametrized geometric finiteness theorem. Indiana Univ Math J, 1996, 45 2 511-528

[21]

Yamaguchi T. Collapsing and pinching under a lower curvature bound. Ann of Math, 1991, 133, 317-357

[22]

Yamaguchi T. A convergence theorem in the geometry of Alexandrov spaces. Actes de la Table Ronde de Geometrie Differential (Luminy, 1992), Semin Congr, 1. 1996, 601–642

AI Summary AI Mindmap
PDF (266KB)

827

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/