Stability of almost submetries

Xiaochun RONG, Shicheng XU

PDF(266 KB)
PDF(266 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (1) : 137-154. DOI: 10.1007/s11464-010-0076-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Stability of almost submetries

Author information +
History +

Abstract

In this paper, we consider a triple of Gromov-Hausdorff convergence: AidGHA, BidGHB and maps fi : AiBi converge to a map f : AB, where Ai are compact Alexandrov n-spaces and Bi are compact Riemannian m-manifolds such that the curvature, diameter and volume are suitably bounded (non-collapsing). When f is a submetry, we give a necessary and sufficient condition for the sequence to be stable, that is, for i large, there are homeomorphisms, Ψi : AiA, Φi : BiB such that f ◦ Ψi = Φifi. When f is an ϵ-submetry with ϵ>0, we obtain a sufficient condition for the stability in the case that Ai are Riemannian manifolds. Our results generalize the stability/finiteness results on fiber bundles by Riemannian submersions and by submetries.

Keywords

Gromov-Hausdorff convergence / Alexandrov space / stability / fiber bundle / (almost) submetry

Cite this article

Download citation ▾
Xiaochun RONG, Shicheng XU. Stability of almost submetries. Front Math Chin, 2011, 6(1): 137‒154 https://doi.org/10.1007/s11464-010-0076-7

References

[1]
Berestovskii V N, Guijarro L. A metric characterization of Riemannian submersions. Ann Global Anal Geom, 2000, 18(6): 577-588
CrossRef Google scholar
[2]
Burago Y, Gromov M, Perel’man G. A.D. Alexandrov spaces with curvature bounded below. Uspekhi Mat Nauk, 1992, 47: 3-51
[3]
Cheeger J. Finiteness theorems for Riemannian manifolds. Amer J Math, 1970, 92: 61-75
CrossRef Google scholar
[4]
Cheeger J, Fukaya K, Gromov M. Nilpotent structures and invariant metrics on collapsed manifolds. J Amer Math Soc, 1992, 5: 327-372
[5]
Fukaya K. Hausdorff convergence of Riemannian manifolds and its applications. In: Recent Topics in Differential and Analytic Geometry. Adv Stud Pure Math, 18-I.Boston: Academic Press, 1990, 143-238
[6]
Green R E, Wu H. Lipschitz convergence of Riemannian manifolds. Pacific J Math, 1988, 131: 119-141
[7]
Gromov M, Lafontaine J, Pansu P. Structures metriques pour les varietes riemannienes. Paris: CedicFernand, 1981
[8]
Grove K, Petersen P. A radius sphere theorem. Invent Math, 1993, 112: 577-583
CrossRef Google scholar
[9]
Kapovitch V. Perelman’s stability theorem. In: Surveys in Differential Geometry, XI.Somerville: Int Press, 2007, 103-136
[10]
Perel’man G. Alexandrov spaces with curvatures bounded from below II. Preprint, 1991
[11]
Perel’man G. Elements of Morse theory on Aleksandrov spaces. St Petersburg Math J, 1993, 5: 205-213
[12]
Peters S. Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds. J Reine Angew Math, 1984, 349: 77-82
CrossRef Google scholar
[13]
Petersen P. Riemannian Geometry. Grad Texts in Math, Vol 171.Berlin: Springer- Verlag, 2006
[14]
Petrunin A. Semiconcave functions in Alexandrov’s geometry. In: Cheeger J, Grove K, eds. Surveys in Differential Geometry, Vol XI.Somerville: Int Press, 2007, 137-202
[15]
Rong X. Convergence and collapsing theorems in Riemannian geometry. In: Ji L Z, Li P, Schoen R, Simon L, eds. Handbook of Geometric Analysis, Vol II.Beijing-Boston: Higher Education Press and International Press, 2010, 193-298
[16]
Tapp K. Bounded Riemannian submersions. Indiana Univ Math J, 2000, 49(2): 637-654
CrossRef Google scholar
[17]
Tapp K. Finiteness theorems for submersions and souls. Proc Amer Math Soc, 2002, 130(6): 1809-1817
CrossRef Google scholar
[18]
Walczak P. A finiteness theorem for Riemannian submersions. Ann Polon Math, 1992, 57: 283-290
[19]
Walczak P. Erratum to the paper A finiteness theorem for Riemannian submersions. Ann Polon Math, 1993, 58: 319
[20]
Wu J Y. A parametrized geometric finiteness theorem. Indiana Univ Math J, 1996, 45(2): 511-528
CrossRef Google scholar
[21]
Yamaguchi T. Collapsing and pinching under a lower curvature bound. Ann of Math, 1991, 133: 317-357
CrossRef Google scholar
[22]
Yamaguchi T. A convergence theorem in the geometry of Alexandrov spaces. Actes de la Table Ronde de Geometrie Differential (Luminy, 1992), Semin Congr, 1. 1996, 601-642

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(266 KB)

Accesses

Citations

Detail

Sections
Recommended

/