RESEARCH ARTICLE

Boundedness for a class of fractional integrals with a rough kernel related to block spaces

  • Xiao YU , 1 ,
  • Shanzhen LU 2
Expand
  • 1. Department of Mathematics, Shangrao Normal University, Shangrao 334001, China
  • 2. School of Mathematical Science, Beijing Normal University, Beijing 100875, China

Received date: 08 Jul 2014

Accepted date: 13 Sep 2015

Published date: 02 Dec 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We prove the boundedness of fractional integral with a rough kernel on Triebel-Lizorkin spaces, where the rough kernel belongs to the block space and does not need to satisfy any moment conditions on the unit sphere.

Cite this article

Xiao YU , Shanzhen LU . Boundedness for a class of fractional integrals with a rough kernel related to block spaces[J]. Frontiers of Mathematics in China, 2016 , 11(1) : 173 -187 . DOI: 10.1007/s11464-015-0499-2

1
AL-Hasan A J, Fan D. A singular integral operator related to block spaces. Hokkaido Math J, 1999, 28: 285–299

DOI

2
Chen J, Fan D, Ying Y. Singular integral operators on function spaces, J Math Anal Appl, 2002, 276: 691–708

DOI

3
Ding Y, Lu S. Weighted norm inequalities for fractional integral operators with rough kernel. Canad J Math, 1998, 50: 29–39

DOI

4
Duoandikoetxea J, Rubio de Francia J-L. Maximal and singular integral operators via Fourier transform estimates. Invent Math, 1986, 84: 541–561

DOI

5
Fan D, Guo K, Pan Y. Singular integrals with rough kernels on product spaces. Hokkaido Math J, 1999, 28: 435–460

DOI

6
Fan D, Le V. Singular integrals and fractional integrals in Triebel-Lizorkin spaces and in weighted Lp spaces. Math Inequal Appl, 2007, 11: 127–147

7
Fan D, Sato S. Singular and fractional integrals along variable surfaces. Hokkaido Math J, 2006, 35: 61–85

DOI

8
Jiang Y, Lu S. Lp boundedness for a class of maximal singular integrals. Acta Math Sinica (Chin Ser), 1992, 35: 63–72 (in Chinese)

9
Jiang Y, Lu S. A note on a class of singular integral operators. Acta Math Sinica (Chin Ser), 1993, 36: 555–562 (in Chinese)

10
Jiang Y, Lu S. A class of singular integral operators with rough kernels on product domain. Hokkaido Math J, 1995, 24: 1–7

DOI

11
Keitoku M, Sato E. Block spaces on the unit sphere ℝn. Proc Amer Math Soc, 1993, 119: 453–455

12
Lu S. On block decomposition of functions. Scientia Sinica, 1984, 27: 585–596

13
Lu S. Applications of some block spaces to singular integrals. Front Math China, 2007, 2: 61–72

DOI

14
Lu S, Taibleson M, Weiss G. On the a.e. convergence of Bochner-Riesz means of multiple Fourier series. In: Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 908. Berlin: Springer, 1982, 311–318

15
Lu S, Taibleson M, Weiss G. Spaces Generated by Blocks. Beijing: Beijing Normal Univ Press, 1989

16
Lu S, Wu H. A class of multilinear oscillatory singular integrals related to block space. Tohoku Math J, 2004, 5: 299–315

DOI

17
Taibleson M, Weiss G. Certain function spaces associated with a.e. convergence of Fourier series. In: Univ of Chicago Conf, in Honor of Zygmund, I. Woodsworth, 1983, 95–113

18
Triebel H. Theory of Function Spaces. Monographs in Mathematics, Basel: Birkháuser, 1983

DOI

19
Wu H. Boundedness of higher order commutators of oscillatory singular integrals with rough kernels. Studia Math, 2005, 167: 29–43

DOI

20
Wu H. Generalized Littelwood-Paley functions and singular integral operators on product spaces. Math Nachr, 2006, 279: 431–444

DOI

21
Ye X, Zhu X. A note on certain block spaces on the unit sphere. Acta Math Sin (Engl Ser), 2006, 26: 1843–1846

DOI

Outlines

/