Boundedness for a class of fractional integrals with a rough kernel related to block spaces
Xiao YU, Shanzhen LU
Boundedness for a class of fractional integrals with a rough kernel related to block spaces
We prove the boundedness of fractional integral with a rough kernel on Triebel-Lizorkin spaces, where the rough kernel belongs to the block space and does not need to satisfy any moment conditions on the unit sphere.
Fractional integral / block space / Triebel-Lizorkin space / Fourier transform / interpolation
[1] |
AL-Hasan A J, Fan D. A singular integral operator related to block spaces. Hokkaido Math J, 1999, 28: 285–299
CrossRef
Google scholar
|
[2] |
Chen J, Fan D, Ying Y. Singular integral operators on function spaces, J Math Anal Appl, 2002, 276: 691–708
CrossRef
Google scholar
|
[3] |
Ding Y, Lu S. Weighted norm inequalities for fractional integral operators with rough kernel. Canad J Math, 1998, 50: 29–39
CrossRef
Google scholar
|
[4] |
Duoandikoetxea J, Rubio de Francia J-L. Maximal and singular integral operators via Fourier transform estimates. Invent Math, 1986, 84: 541–561
CrossRef
Google scholar
|
[5] |
Fan D, Guo K, Pan Y. Singular integrals with rough kernels on product spaces. Hokkaido Math J, 1999, 28: 435–460
CrossRef
Google scholar
|
[6] |
Fan D, Le V. Singular integrals and fractional integrals in Triebel-Lizorkin spaces and in weighted Lp spaces. Math Inequal Appl, 2007, 11: 127–147
|
[7] |
Fan D, Sato S. Singular and fractional integrals along variable surfaces. Hokkaido Math J, 2006, 35: 61–85
CrossRef
Google scholar
|
[8] |
Jiang Y, Lu S. Lp boundedness for a class of maximal singular integrals. Acta Math Sinica (Chin Ser), 1992, 35: 63–72 (in Chinese)
|
[9] |
Jiang Y, Lu S. A note on a class of singular integral operators. Acta Math Sinica (Chin Ser), 1993, 36: 555–562 (in Chinese)
|
[10] |
Jiang Y, Lu S. A class of singular integral operators with rough kernels on product domain. Hokkaido Math J, 1995, 24: 1–7
CrossRef
Google scholar
|
[11] |
Keitoku M, Sato E. Block spaces on the unit sphere ℝn. Proc Amer Math Soc, 1993, 119: 453–455
|
[12] |
Lu S. On block decomposition of functions. Scientia Sinica, 1984, 27: 585–596
|
[13] |
Lu S. Applications of some block spaces to singular integrals. Front Math China, 2007, 2: 61–72
CrossRef
Google scholar
|
[14] |
Lu S, Taibleson M, Weiss G. On the a.e. convergence of Bochner-Riesz means of multiple Fourier series. In: Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 908. Berlin: Springer, 1982, 311–318
|
[15] |
Lu S, Taibleson M, Weiss G. Spaces Generated by Blocks. Beijing: Beijing Normal Univ Press, 1989
|
[16] |
Lu S, Wu H. A class of multilinear oscillatory singular integrals related to block space. Tohoku Math J, 2004, 5: 299–315
CrossRef
Google scholar
|
[17] |
Taibleson M, Weiss G. Certain function spaces associated with a.e. convergence of Fourier series. In: Univ of Chicago Conf, in Honor of Zygmund, I. Woodsworth, 1983, 95–113
|
[18] |
Triebel H. Theory of Function Spaces. Monographs in Mathematics, Basel: Birkháuser, 1983
CrossRef
Google scholar
|
[19] |
Wu H. Boundedness of higher order commutators of oscillatory singular integrals with rough kernels. Studia Math, 2005, 167: 29–43
CrossRef
Google scholar
|
[20] |
Wu H. Generalized Littelwood-Paley functions and singular integral operators on product spaces. Math Nachr, 2006, 279: 431–444
CrossRef
Google scholar
|
[21] |
Ye X, Zhu X. A note on certain block spaces on the unit sphere. Acta Math Sin (Engl Ser), 2006, 26: 1843–1846
CrossRef
Google scholar
|
/
〈 | 〉 |