Boundedness for a class of fractional integrals with a rough kernel related to block spaces

Xiao YU , Shanzhen LU

Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 173 -187.

PDF (148KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 173 -187. DOI: 10.1007/s11464-015-0499-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Boundedness for a class of fractional integrals with a rough kernel related to block spaces

Author information +
History +
PDF (148KB)

Abstract

We prove the boundedness of fractional integral with a rough kernel on Triebel-Lizorkin spaces, where the rough kernel belongs to the block space and does not need to satisfy any moment conditions on the unit sphere.

Keywords

Fractional integral / block space / Triebel-Lizorkin space / Fourier transform / interpolation

Cite this article

Download citation ▾
Xiao YU, Shanzhen LU. Boundedness for a class of fractional integrals with a rough kernel related to block spaces. Front. Math. China, 2016, 11(1): 173-187 DOI:10.1007/s11464-015-0499-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AL-Hasan A J, Fan D. A singular integral operator related to block spaces. Hokkaido Math J, 1999, 28: 285–299

[2]

Chen J, Fan D, Ying Y. Singular integral operators on function spaces, J Math Anal Appl, 2002, 276: 691–708

[3]

Ding Y, Lu S. Weighted norm inequalities for fractional integral operators with rough kernel. Canad J Math, 1998, 50: 29–39

[4]

Duoandikoetxea J, Rubio de Francia J-L. Maximal and singular integral operators via Fourier transform estimates. Invent Math, 1986, 84: 541–561

[5]

Fan D, Guo K, Pan Y. Singular integrals with rough kernels on product spaces. Hokkaido Math J, 1999, 28: 435–460

[6]

Fan D, Le V. Singular integrals and fractional integrals in Triebel-Lizorkin spaces and in weighted Lp spaces. Math Inequal Appl, 2007, 11: 127–147

[7]

Fan D, Sato S. Singular and fractional integrals along variable surfaces. Hokkaido Math J, 2006, 35: 61–85

[8]

Jiang Y, Lu S. Lp boundedness for a class of maximal singular integrals. Acta Math Sinica (Chin Ser), 1992, 35: 63–72 (in Chinese)

[9]

Jiang Y, Lu S. A note on a class of singular integral operators. Acta Math Sinica (Chin Ser), 1993, 36: 555–562 (in Chinese)

[10]

Jiang Y, Lu S. A class of singular integral operators with rough kernels on product domain. Hokkaido Math J, 1995, 24: 1–7

[11]

Keitoku M, Sato E. Block spaces on the unit sphere ℝn. Proc Amer Math Soc, 1993, 119: 453–455

[12]

Lu S. On block decomposition of functions. Scientia Sinica, 1984, 27: 585–596

[13]

Lu S. Applications of some block spaces to singular integrals. Front Math China, 2007, 2: 61–72

[14]

Lu S, Taibleson M, Weiss G. On the a.e. convergence of Bochner-Riesz means of multiple Fourier series. In: Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 908. Berlin: Springer, 1982, 311–318

[15]

Lu S, Taibleson M, Weiss G. Spaces Generated by Blocks. Beijing: Beijing Normal Univ Press, 1989

[16]

Lu S, Wu H. A class of multilinear oscillatory singular integrals related to block space. Tohoku Math J, 2004, 5: 299–315

[17]

Taibleson M, Weiss G. Certain function spaces associated with a.e. convergence of Fourier series. In: Univ of Chicago Conf, in Honor of Zygmund, I. Woodsworth, 1983, 95–113

[18]

Triebel H. Theory of Function Spaces. Monographs in Mathematics, Basel: Birkháuser, 1983

[19]

Wu H. Boundedness of higher order commutators of oscillatory singular integrals with rough kernels. Studia Math, 2005, 167: 29–43

[20]

Wu H. Generalized Littelwood-Paley functions and singular integral operators on product spaces. Math Nachr, 2006, 279: 431–444

[21]

Ye X, Zhu X. A note on certain block spaces on the unit sphere. Acta Math Sin (Engl Ser), 2006, 26: 1843–1846

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (148KB)

1009

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/