Frontiers of Mathematics in China >
Boundedness of θ-type Calderón-Zygmund operators on non-homogeneous metric measure space
Received date: 26 Dec 2014
Accepted date: 04 Mar 2015
Published date: 02 Dec 2015
Copyright
Let (X, d, μ) be a metric measure space satisfying both the upper doubling and the geometrically doubling conditions in the sense of Hytönen. Under this assumption, we prove thatθ-type Calderón-Zygmund operators which are bounded on L2(μ) are also bounded from L∞(μ) into RBMO(μ) and from H1,∞at (μ) into L1(μ).
Chol RI , Zhenqiu ZHANG . Boundedness of θ-type Calderón-Zygmund operators on non-homogeneous metric measure space[J]. Frontiers of Mathematics in China, 2016 , 11(1) : 141 -153 . DOI: 10.1007/s11464-015-0464-0
1 |
Bui T A, Duong X T. Hardy spaces, regularized BMO spaces and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces. J Geom Anal, 2013, 23: 895–932
|
2 |
Coifman R, Weiss G. Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Lecture Notes in Math, Vol 242. Berlin: Springer, 1971
|
3 |
Coifman R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645
|
4 |
Fu X, Hu G, Yang D. A remark on the boundedness of Calderón-Zygmund operators in non-homogeneous spaces. Acta Math Sin (Engl Ser), 2007, 23: 449–456
|
5 |
Heinenon J. Lectures on Analysis on Metric Spaces. New York: Springer-Verlag, 2001
|
6 |
Hytönen T. A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ Mat, 2010, 54: 485–504
|
7 |
Hytönen T, Liu S, Yang D, Yang D. Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces. Canad J Math, 2012, 64: 892–923
|
8 |
Hytönen T, Yang D, Yang D. The Hardy space H1 on non-homogeneous metric spaces. Math Proc Cambridge Philos Soc, 2012, 153: 9–31
|
9 |
Lin H, Yang D. Spaces of type BLO on non-homogeneous metric measure spaces. Front Math China, 2011, 6: 271–292
|
10 |
Liu S, Yang D, Yang D. Boundedness of Calderón-Zygmund operators on nonhomogeneous metric measure spaces: equivalent characterizations. J Math Anal Appl, 2012, 386: 258–272
|
11 |
Nazarov F, Treil S, Volberg A. The Tb-theorem on non-homogeneous spaces. Acta Math, 2003, 190: 151–239
|
12 |
Tolsa X. BMO, H1 and Caldeŕon-Zygmund operators for non doubling measures. Math Ann, 2001, 319: 89–149
|
13 |
Xie R, Shu L. θ-type Caldeŕon-Zygmund operators with non-doubling measures. Acta Math Appl Sin Engl Ser, 2013, 29(2): 263–280
|
14 |
Yabuta K. Generalization of Calderón-Zygmund operators. Studia Math, 1985, 82: 17–31
|
15 |
Yang D, Yang D, Hu G. The Hardy space H1 with non-doubling measures and their applications. Lecture Notes in Math, Vol 2084. Berlin: Springer, 2013
|
/
〈 | 〉 |