Boundedness of θ-type Calderón-Zygmund operators on non-homogeneous metric measure space

Chol RI, Zhenqiu ZHANG

PDF(137 KB)
PDF(137 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 141-153. DOI: 10.1007/s11464-015-0464-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Boundedness of θ-type Calderón-Zygmund operators on non-homogeneous metric measure space

Author information +
History +

Abstract

Let (X, d, μ) be a metric measure space satisfying both the upper doubling and the geometrically doubling conditions in the sense of Hytönen. Under this assumption, we prove thatθ-type Calderón-Zygmund operators which are bounded on L2(μ) are also bounded from L(μ) into RBMO(μ) and from H1,∞at (μ) into L1(μ).

Keywords

Non-homogeneous spaces / θ-type Calderón-Zygmund operators / RBMO(μ) space / H1 / ,∞at (μ) space

Cite this article

Download citation ▾
Chol RI, Zhenqiu ZHANG. Boundedness of θ-type Calderón-Zygmund operators on non-homogeneous metric measure space. Front. Math. China, 2016, 11(1): 141‒153 https://doi.org/10.1007/s11464-015-0464-0

References

[1]
Bui T A, Duong X T. Hardy spaces, regularized BMO spaces and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces. J Geom Anal, 2013, 23: 895–932
CrossRef Google scholar
[2]
Coifman R, Weiss G. Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Lecture Notes in Math, Vol 242. Berlin: Springer, 1971
[3]
Coifman R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645
CrossRef Google scholar
[4]
Fu X, Hu G, Yang D. A remark on the boundedness of Calderón-Zygmund operators in non-homogeneous spaces. Acta Math Sin (Engl Ser), 2007, 23: 449–456
CrossRef Google scholar
[5]
Heinenon J. Lectures on Analysis on Metric Spaces. New York: Springer-Verlag, 2001
CrossRef Google scholar
[6]
Hytönen T. A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ Mat, 2010, 54: 485–504
CrossRef Google scholar
[7]
Hytönen T, Liu S, Yang D, Yang D. Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces. Canad J Math, 2012, 64: 892–923
CrossRef Google scholar
[8]
Hytönen T, Yang D, Yang D. The Hardy space H1 on non-homogeneous metric spaces. Math Proc Cambridge Philos Soc, 2012, 153: 9–31
CrossRef Google scholar
[9]
Lin H, Yang D. Spaces of type BLO on non-homogeneous metric measure spaces. Front Math China, 2011, 6: 271–292
CrossRef Google scholar
[10]
Liu S, Yang D, Yang D. Boundedness of Calderón-Zygmund operators on nonhomogeneous metric measure spaces: equivalent characterizations. J Math Anal Appl, 2012, 386: 258–272
CrossRef Google scholar
[11]
Nazarov F, Treil S, Volberg A. The Tb-theorem on non-homogeneous spaces. Acta Math, 2003, 190: 151–239
CrossRef Google scholar
[12]
Tolsa X. BMO, H1 and Caldeŕon-Zygmund operators for non doubling measures. Math Ann, 2001, 319: 89–149
CrossRef Google scholar
[13]
Xie R, Shu L. θ-type Caldeŕon-Zygmund operators with non-doubling measures. Acta Math Appl Sin Engl Ser, 2013, 29(2): 263–280
CrossRef Google scholar
[14]
Yabuta K. Generalization of Calderón-Zygmund operators. Studia Math, 1985, 82: 17–31
[15]
Yang D, Yang D, Hu G. The Hardy space H1 with non-doubling measures and their applications. Lecture Notes in Math, Vol 2084. Berlin: Springer, 2013
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(137 KB)

Accesses

Citations

Detail

Sections
Recommended

/