Frontiers of Mathematics in China >
Regularity for anisotropic solutions to some nonlinear elliptic system
Received date: 20 Nov 2014
Accepted date: 29 Dec 2014
Published date: 02 Dec 2015
Copyright
This paper deals with anisotropic solutions to the nonlinear elliptic system
We present a monotonicity inequality for the matrix whichguarantees global pointwise bounds for anisotropic solutions.
Key words: Regularity; anisotropic solution; nonlinear elliptic system
Hongya GAO , Shuang LIANG , Yi CUI . Regularity for anisotropic solutions to some nonlinear elliptic system[J]. Frontiers of Mathematics in China, 2016 , 11(1) : 77 -87 . DOI: 10.1007/s11464-015-0443-5
1 |
Gao H.Regularity for solutions to anisotropic obstacle problems. Sci China Math, 2014, 57: 111–122
|
2 |
Gao H, Chu Y.Quasiregular Mappings and
|
3 |
Gao H, Di Q, Ma D.Integrability for solutions to some anisotropic obstacle problems. Manuscripta Math (to appear)
|
4 |
Gao H, Huang Q.Local regularity for solutions of anisotropic obstacle problems. Nonlinear Anal, 2012, 75: 4761–4765
|
5 |
Gao H,Liu C, Tian H. Remarks on a paper by Leonetti and Siepe. J Math Anal Appl, 2013, 401: 881–887
|
6 |
Giachetti D, Porzio M M. Local regularity results for minima of functionals of the calculus of variation. Nonlinear Anal, 2000, 39: 463–482
|
7 |
Giaquinta M.Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Ann of Math Stud, Vol 105. Princeton: Princeton University Press, 1983
|
8 |
De Giorgi E.Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll Unione Mat Ital, 1968, 4: 135–137
|
9 |
Leonetti F, Mascolo E.Local boundedness for vector valued minimizers of anisotropic functionals. Z Anal Anwend, 2012, 31: 357–378
|
10 |
Leonetti F, Petricca P V.Regularity for vector valued minimizers of some anisotropic integral functionals. J Inequal Pure Appl Math, 2006, 7(3): Art 88
|
11 |
Leonetti F, Petricca P V.Existence of bounded solutions to some nonlinear degenerate elliptic systems. Discrete Contin Dyn Syst Ser B, 2009, 11: 191–203
|
12 |
Leonetti F, Siepe F.Integrability for solutions to some anisotropic elliptic equations. Nonlinear Anal, 2012, 75: 2867–2873
|
13 |
Leonetti F, Siepe F.Global integrability for minimizers of anisotropic functionals. Manuscripta Math, 2014, 144: 91–98
|
14 |
Mingione G.Regularity of minima: an invitation of dark side of the calculus of variations. Appl Math, 2006, 51: 355–426
|
15 |
Stampacchia G.Equations Elliptiques du second ordre a coefficientes discontinus. Semin de Math Superieures, Univ de Montreal, 1996
|
16 |
Stroffolini B.Global boundedness of solutions of anisotropic variational problems. Boll Unione Mat Ital, 1991, 5A: 345–352
|
17 |
Tang Q.Regularity of minimizers of non-isotropic integrals of the calculus of variations. Ann Mat Pura Appl, 1993, 164: 77–87
|
18 |
Zhou S.A note on nonlinear elliptic systems involving measure. Electron J Differential Equations, 2000, (08): 1–6
|
/
〈 | 〉 |