Regularity for anisotropic solutions to some nonlinear elliptic system

Hongya GAO , Shuang LIANG , Yi CUI

Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 77 -87.

PDF (126KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 77 -87. DOI: 10.1007/s11464-015-0443-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Regularity for anisotropic solutions to some nonlinear elliptic system

Author information +
History +
PDF (126KB)

Abstract

This paper deals with anisotropic solutions uW1,(pi)(Ω,N) to the nonlinear elliptic system

Σi=1nDi(aiα(χ,Du(χ)))=Σi=1nDiFiα(χ), α=1,2,...,N,

We present a monotonicity inequality for the matrix a=(aiα)N×n,whichguarantees global pointwise bounds for anisotropic solutionsu.

Keywords

Regularity / anisotropic solution / nonlinear elliptic system

Cite this article

Download citation ▾
Hongya GAO, Shuang LIANG, Yi CUI. Regularity for anisotropic solutions to some nonlinear elliptic system. Front. Math. China, 2016, 11(1): 77-87 DOI:10.1007/s11464-015-0443-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao H.Regularity for solutions to anisotropic obstacle problems. Sci China Math, 2014, 57: 111–122

[2]

Gao H, Chu Y.Quasiregular Mappings and A-Harmonic Equation. Beijing: Science Press, 2013 (in Chinese)

[3]

Gao H, Di Q, Ma D.Integrability for solutions to some anisotropic obstacle problems. Manuscripta Math (to appear)

[4]

Gao H, Huang Q.Local regularity for solutions of anisotropic obstacle problems. Nonlinear Anal, 2012, 75: 4761–4765

[5]

Gao H,Liu C, Tian H. Remarks on a paper by Leonetti and Siepe. J Math Anal Appl, 2013, 401: 881–887

[6]

Giachetti D, Porzio M M. Local regularity results for minima of functionals of the calculus of variation. Nonlinear Anal, 2000, 39: 463–482

[7]

Giaquinta M.Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Ann of Math Stud, Vol 105. Princeton: Princeton University Press, 1983

[8]

De Giorgi E.Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll Unione Mat Ital, 1968, 4: 135–137

[9]

Leonetti F, Mascolo E.Local boundedness for vector valued minimizers of anisotropic functionals. Z Anal Anwend, 2012, 31: 357–378

[10]

Leonetti F, Petricca P V.Regularity for vector valued minimizers of some anisotropic integral functionals. J Inequal Pure Appl Math, 2006, 7(3): Art 88

[11]

Leonetti F, Petricca P V.Existence of bounded solutions to some nonlinear degenerate elliptic systems. Discrete Contin Dyn Syst Ser B, 2009, 11: 191–203

[12]

Leonetti F, Siepe F.Integrability for solutions to some anisotropic elliptic equations. Nonlinear Anal, 2012, 75: 2867–2873

[13]

Leonetti F, Siepe F.Global integrability for minimizers of anisotropic functionals. Manuscripta Math, 2014, 144: 91–98

[14]

Mingione G.Regularity of minima: an invitation of dark side of the calculus of variations. Appl Math, 2006, 51: 355–426

[15]

Stampacchia G.Equations Elliptiques du second ordre a coefficientes discontinus. Semin de Math Superieures, Univ de Montreal, 1996

[16]

Stroffolini B.Global boundedness of solutions of anisotropic variational problems. Boll Unione Mat Ital, 1991, 5A: 345–352

[17]

Tang Q.Regularity of minimizers of non-isotropic integrals of the calculus of variations. Ann Mat Pura Appl, 1993, 164: 77–87

[18]

Zhou S.A note on nonlinear elliptic systems involving measure. Electron J Differential Equations, 2000, (08): 1–6

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (126KB)

638

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/