Frontiers of Mathematics in China >
A posteriori error estimates for optimal control problems constrained by convection-diffusion equations
Received date: 23 Oct 2014
Accepted date: 28 Nov 2014
Published date: 02 Dec 2015
Copyright
We propose a characteristic finite element discretization of evolutionary type convection-diffusion optimal control problems. Nondivergence-free velocity fields and bilateral inequality control constraints are handled. Then some residual type a posteriori error estimates are analyzed for the approximations of the control, the state, and the adjoint state. Based on the derived error estimators, we use them as error indicators in developing efficient multi-set adaptive meshes characteristic finite element algorithm for such optimal control problems. Finally, one numerical example is given to check the feasibility and validity of multi-set adaptive meshes refinements.
Hongfei FU , Hongxing RUI , Zhaojie ZHOU . A posteriori error estimates for optimal control problems constrained by convection-diffusion equations[J]. Frontiers of Mathematics in China, 2016 , 11(1) : 55 -75 . DOI: 10.1007/s11464-015-0456-0
1 |
Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: Wiley-Interscience, 2000
|
2 |
Bangerth W, Rannacher R. Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics, ETH Zurich. Basel: Birkhăuser, 2003
|
3 |
Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J Control Optim, 2000, 39: 113–132
|
4 |
Chang Y Z, Yang D P, Zhang Z J. Adaptive finite element approximation for a class of parameter estimation problems. Appl Math Comput, 2014, 231: 284–298
|
5 |
Ciarlet P G. The Finite Element Method for Elliptic Problems. Philadelphia: SIAM, 2002
|
6 |
Douglas J, Russell T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J Numer Anal, 1982, 19: 871–885DissertationTip
|
7 |
Ewing R E, Russell T F, Wheeler M F. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput Methods Appl Mech Engrg, 1984, 47: 73–92
|
8 |
Fu H F. A characteristic finite element method for optimal control problems governed by convection-diffusion equations. J Comput Appl Math, 2010, 235: 825–836
|
9 |
Fu H F, Rui H X. A priori error estimates for optimal control problems governed by transient advection-diffusion equations. J Sci Comput, 2009, 38: 290–315
|
10 |
Fu H F, Rui H X. A priori and a posteriori error estimates for the method of lumped masses for parabolic optimal control problems. Int J Comput Math, 2011, 88: 2798–2823
|
11 |
Fu H F, Rui H X. Adaptive characteristic finite element approximation of convectiondiffusion optimal control problems. Numer Methods Partial Differential Equations, 2013, 29: 978–998
|
12 |
Ge L, Liu W B, Yang D P. Adaptive finite element approximation for a constrained optimal control problem via multi-meshes. J Sci Comput, 2009, 41: 238–255
|
13 |
Houston P, Süli E. Adaptive Lagrange-Galerkin methods for unsteady convectiondiffusion problems. Math Comput, 2001, 70: 77–106
|
14 |
Kufner A, John O, Fucik S. Function Spaces. Leyden: Noordhoff, 1977
|
15 |
Li R. On multi-mesh h-adaptive meshes. J Sci Comput, 2005, 24: 321–341
|
16 |
Li R, Liu W B, Ma H P, Tang T. Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J Control Optim, 2002, 41: 1321–1349
|
17 |
Lions J L. Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer-Verlag, 1971
|
18 |
Liu W B, Yan N N. A posteriori error estimates for optimal boundary control. SIAM J Numer Anal, 2001, 39: 73–99
|
19 |
Liu W B, Yan N N. A posteriori error estimates for distributed convex optimal control problems. Adv Comput Math, 2001, 15: 285–309
|
20 |
Liu W B, Yan N N. A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl Numer Math, 2003, 47: 173–187
|
21 |
Liu W B, Yan N N. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math, 2003, 93: 497–521
|
22 |
Liu W B, Yan N N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Beijing: Science Press, 2008
|
23 |
Meidner D, Vexler B. Adaptive space-time finite element methods for parabolic optimization problems. SIAM J Control Optim, 2007, 4: 116–142
|
24 |
Pironneau O. Optimal Shape Design for Elliptic Systems. Berlin: Springer-Verlag, 1984
|
25 |
Rui H X, Tabata M. A second order characteristic finite element scheme for convectiondiffusion problems. Numer Math, 2002, 92: 161–177
|
26 |
Rui H X, Tabata M. A mass-conservative characteristic finite element scheme for convection-diffusion problems. J Sci Comput, 2010, 43: 416–432
|
27 |
Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput, 1990, 54: 483–493
|
28 |
Tiba D. Lectures on the Optimal Control of Elliptic Equations. Jyvaskyla: University of Jyvaskyla Press, 1995
|
29 |
Veeser A. Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J Numer Anal, 2001, 39: 146–167
|
30 |
Xiong C, Li Y. A posteriori error estimates for optimal distributed control governed by the evolution equations. Appl Numer Math, 2011, 61: 181–200
|
/
〈 | 〉 |