RESEARCH ARTICLE

A posteriori error estimates for optimal control problems constrained by convection-diffusion equations

  • Hongfei FU , 1 ,
  • Hongxing RUI 2 ,
  • Zhaojie ZHOU 3
Expand
  • 1. College of Science, China University of Petroleum, Qingdao 266580, China
  • 2. School of Mathematics, Shandong University, Jinan 250100, China
  • 3. School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China

Received date: 23 Oct 2014

Accepted date: 28 Nov 2014

Published date: 02 Dec 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We propose a characteristic finite element discretization of evolutionary type convection-diffusion optimal control problems. Nondivergence-free velocity fields and bilateral inequality control constraints are handled. Then some residual type a posteriori error estimates are analyzed for the approximations of the control, the state, and the adjoint state. Based on the derived error estimators, we use them as error indicators in developing efficient multi-set adaptive meshes characteristic finite element algorithm for such optimal control problems. Finally, one numerical example is given to check the feasibility and validity of multi-set adaptive meshes refinements.

Cite this article

Hongfei FU , Hongxing RUI , Zhaojie ZHOU . A posteriori error estimates for optimal control problems constrained by convection-diffusion equations[J]. Frontiers of Mathematics in China, 2016 , 11(1) : 55 -75 . DOI: 10.1007/s11464-015-0456-0

1
Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: Wiley-Interscience, 2000

DOI

2
Bangerth W, Rannacher R. Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics, ETH Zurich. Basel: Birkhăuser, 2003

DOI

3
Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J Control Optim, 2000, 39: 113–132

DOI

4
Chang Y Z, Yang D P, Zhang Z J. Adaptive finite element approximation for a class of parameter estimation problems. Appl Math Comput, 2014, 231: 284–298

DOI

5
Ciarlet P G. The Finite Element Method for Elliptic Problems. Philadelphia: SIAM, 2002

DOI

6
Douglas J, Russell T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J Numer Anal, 1982, 19: 871–885DissertationTip

7
Ewing R E, Russell T F, Wheeler M F. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput Methods Appl Mech Engrg, 1984, 47: 73–92

DOI

8
Fu H F. A characteristic finite element method for optimal control problems governed by convection-diffusion equations. J Comput Appl Math, 2010, 235: 825–836

DOI

9
Fu H F, Rui H X. A priori error estimates for optimal control problems governed by transient advection-diffusion equations. J Sci Comput, 2009, 38: 290–315

DOI

10
Fu H F, Rui H X. A priori and a posteriori error estimates for the method of lumped masses for parabolic optimal control problems. Int J Comput Math, 2011, 88: 2798–2823

DOI

11
Fu H F, Rui H X. Adaptive characteristic finite element approximation of convectiondiffusion optimal control problems. Numer Methods Partial Differential Equations, 2013, 29: 978–998

DOI

12
Ge L, Liu W B, Yang D P. Adaptive finite element approximation for a constrained optimal control problem via multi-meshes. J Sci Comput, 2009, 41: 238–255

DOI

13
Houston P, Süli E. Adaptive Lagrange-Galerkin methods for unsteady convectiondiffusion problems. Math Comput, 2001, 70: 77–106

DOI

14
Kufner A, John O, Fucik S. Function Spaces. Leyden: Noordhoff, 1977

15
Li R. On multi-mesh h-adaptive meshes. J Sci Comput, 2005, 24: 321–341

DOI

16
Li R, Liu W B, Ma H P, Tang T. Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J Control Optim, 2002, 41: 1321–1349

DOI

17
Lions J L. Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer-Verlag, 1971

DOI

18
Liu W B, Yan N N. A posteriori error estimates for optimal boundary control. SIAM J Numer Anal, 2001, 39: 73–99

DOI

19
Liu W B, Yan N N. A posteriori error estimates for distributed convex optimal control problems. Adv Comput Math, 2001, 15: 285–309

DOI

20
Liu W B, Yan N N. A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl Numer Math, 2003, 47: 173–187

DOI

21
Liu W B, Yan N N. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math, 2003, 93: 497–521

DOI

22
Liu W B, Yan N N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Beijing: Science Press, 2008

23
Meidner D, Vexler B. Adaptive space-time finite element methods for parabolic optimization problems. SIAM J Control Optim, 2007, 4: 116–142

DOI

24
Pironneau O. Optimal Shape Design for Elliptic Systems. Berlin: Springer-Verlag, 1984

DOI

25
Rui H X, Tabata M. A second order characteristic finite element scheme for convectiondiffusion problems. Numer Math, 2002, 92: 161–177

DOI

26
Rui H X, Tabata M. A mass-conservative characteristic finite element scheme for convection-diffusion problems. J Sci Comput, 2010, 43: 416–432

DOI

27
Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput, 1990, 54: 483–493

DOI

28
Tiba D. Lectures on the Optimal Control of Elliptic Equations. Jyvaskyla: University of Jyvaskyla Press, 1995

29
Veeser A. Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J Numer Anal, 2001, 39: 146–167

DOI

30
Xiong C, Li Y. A posteriori error estimates for optimal distributed control governed by the evolution equations. Appl Numer Math, 2011, 61: 181–200

DOI

Outlines

/