A posteriori error estimates for optimal control problems constrained by convection-diffusion equations

Hongfei FU, Hongxing RUI, Zhaojie ZHOU

PDF(1245 KB)
PDF(1245 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 55-75. DOI: 10.1007/s11464-015-0456-0
RESEARCH ARTICLE
RESEARCH ARTICLE

A posteriori error estimates for optimal control problems constrained by convection-diffusion equations

Author information +
History +

Abstract

We propose a characteristic finite element discretization of evolutionary type convection-diffusion optimal control problems. Nondivergence-free velocity fields and bilateral inequality control constraints are handled. Then some residual type a posteriori error estimates are analyzed for the approximations of the control, the state, and the adjoint state. Based on the derived error estimators, we use them as error indicators in developing efficient multi-set adaptive meshes characteristic finite element algorithm for such optimal control problems. Finally, one numerical example is given to check the feasibility and validity of multi-set adaptive meshes refinements.

Keywords

Optimal control problem / characteristic finite element / convectiondiffusion equation / multi-set adaptive meshes / a posterior error estimate

Cite this article

Download citation ▾
Hongfei FU, Hongxing RUI, Zhaojie ZHOU. A posteriori error estimates for optimal control problems constrained by convection-diffusion equations. Front. Math. China, 2016, 11(1): 55‒75 https://doi.org/10.1007/s11464-015-0456-0

References

[1]
Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: Wiley-Interscience, 2000
CrossRef Google scholar
[2]
Bangerth W, Rannacher R. Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics, ETH Zurich. Basel: Birkhăuser, 2003
CrossRef Google scholar
[3]
Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J Control Optim, 2000, 39: 113–132
CrossRef Google scholar
[4]
Chang Y Z, Yang D P, Zhang Z J. Adaptive finite element approximation for a class of parameter estimation problems. Appl Math Comput, 2014, 231: 284–298
CrossRef Google scholar
[5]
Ciarlet P G. The Finite Element Method for Elliptic Problems. Philadelphia: SIAM, 2002
CrossRef Google scholar
[6]
Douglas J, Russell T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J Numer Anal, 1982, 19: 871–885DissertationTip
[7]
Ewing R E, Russell T F, Wheeler M F. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput Methods Appl Mech Engrg, 1984, 47: 73–92
CrossRef Google scholar
[8]
Fu H F. A characteristic finite element method for optimal control problems governed by convection-diffusion equations. J Comput Appl Math, 2010, 235: 825–836
CrossRef Google scholar
[9]
Fu H F, Rui H X. A priori error estimates for optimal control problems governed by transient advection-diffusion equations. J Sci Comput, 2009, 38: 290–315
CrossRef Google scholar
[10]
Fu H F, Rui H X. A priori and a posteriori error estimates for the method of lumped masses for parabolic optimal control problems. Int J Comput Math, 2011, 88: 2798–2823
CrossRef Google scholar
[11]
Fu H F, Rui H X. Adaptive characteristic finite element approximation of convectiondiffusion optimal control problems. Numer Methods Partial Differential Equations, 2013, 29: 978–998
CrossRef Google scholar
[12]
Ge L, Liu W B, Yang D P. Adaptive finite element approximation for a constrained optimal control problem via multi-meshes. J Sci Comput, 2009, 41: 238–255
CrossRef Google scholar
[13]
Houston P, Süli E. Adaptive Lagrange-Galerkin methods for unsteady convectiondiffusion problems. Math Comput, 2001, 70: 77–106
CrossRef Google scholar
[14]
Kufner A, John O, Fucik S. Function Spaces. Leyden: Noordhoff, 1977
[15]
Li R. On multi-mesh h-adaptive meshes. J Sci Comput, 2005, 24: 321–341
CrossRef Google scholar
[16]
Li R, Liu W B, Ma H P, Tang T. Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J Control Optim, 2002, 41: 1321–1349
CrossRef Google scholar
[17]
Lions J L. Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer-Verlag, 1971
CrossRef Google scholar
[18]
Liu W B, Yan N N. A posteriori error estimates for optimal boundary control. SIAM J Numer Anal, 2001, 39: 73–99
CrossRef Google scholar
[19]
Liu W B, Yan N N. A posteriori error estimates for distributed convex optimal control problems. Adv Comput Math, 2001, 15: 285–309
CrossRef Google scholar
[20]
Liu W B, Yan N N. A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl Numer Math, 2003, 47: 173–187
CrossRef Google scholar
[21]
Liu W B, Yan N N. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math, 2003, 93: 497–521
CrossRef Google scholar
[22]
Liu W B, Yan N N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Beijing: Science Press, 2008
[23]
Meidner D, Vexler B. Adaptive space-time finite element methods for parabolic optimization problems. SIAM J Control Optim, 2007, 4: 116–142
CrossRef Google scholar
[24]
Pironneau O. Optimal Shape Design for Elliptic Systems. Berlin: Springer-Verlag, 1984
CrossRef Google scholar
[25]
Rui H X, Tabata M. A second order characteristic finite element scheme for convectiondiffusion problems. Numer Math, 2002, 92: 161–177
CrossRef Google scholar
[26]
Rui H X, Tabata M. A mass-conservative characteristic finite element scheme for convection-diffusion problems. J Sci Comput, 2010, 43: 416–432
CrossRef Google scholar
[27]
Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput, 1990, 54: 483–493
CrossRef Google scholar
[28]
Tiba D. Lectures on the Optimal Control of Elliptic Equations. Jyvaskyla: University of Jyvaskyla Press, 1995
[29]
Veeser A. Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J Numer Anal, 2001, 39: 146–167
CrossRef Google scholar
[30]
Xiong C, Li Y. A posteriori error estimates for optimal distributed control governed by the evolution equations. Appl Numer Math, 2011, 61: 181–200
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1245 KB)

Accesses

Citations

Detail

Sections
Recommended

/