RESEARCH ARTICLE

Sum-connectivity index of a graph

  • Kinkar Ch. DAS , 1 ,
  • Sumana DAS 2 ,
  • Bo ZHOU 3
Expand
  • 1. Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
  • 2. School of Information and Communication Engineering, Sungkyunkwan University,Suwon 440-746, Korea
  • 3. Department of Mathematics, South China Normal University, Guangzhou 510631, China

Received date: 15 Mar 2015

Accepted date: 10 Apr 2015

Published date: 02 Dec 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let G be a simple connected graph, and let di be the degree of its i-th vertex. The sum-connectivity index of the graph G is defined as χ(G)=ΣvivjE(G) (di+dj)1/2. We discuss the effect on χ(G) of inserting an edge into a graph. Moreover, we obtain the relations between sum-connectivity index and Randić index.

Cite this article

Kinkar Ch. DAS , Sumana DAS , Bo ZHOU . Sum-connectivity index of a graph[J]. Frontiers of Mathematics in China, 2016 , 11(1) : 47 -54 . DOI: 10.1007/s11464-015-0470-2

1
Lučić B, Trinajstíc N, Zhou B. Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons, Chem Phys Lett, 2009, 475:146–148

DOI

2
Luˇcíc B,Nikolíc S,Trinajstíc N, Zhou B, Turk S I. Sum-connectivity index. In: Gutman I, Furtula B, eds. Novel Molecular Structure Descriptors—Theory and Applications I. University of Kragujevac, Kragujevac, 2010, 101–136

3
Du Z, Zhou B, Trinajstić N. Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number. J Math Chem, 2010, 47: 842–855

DOI

4
Li X, Gutman I. Mathematical Aspects of Randić-type Molecular Structure Descriptors. Mathematical Chemistry Monographs, No 1. Kragujevac: University of Kragujevac 2006

5
Li X, Shi Y, A survey on the Randić index. MATCH Commun Math Comput Chem, 2008, 59(1): 127–156

6
Randić M. On characterization of molecular branching. J Am Chem Soc, 1975, 97: 6609–6615

DOI

7
Tache R M. General sum-connectivity index with alpha>= 1 for bicyclic graphs. MATCH Commun Math Comput Chem, 2014, 72: 761–774

8
Todeschini R, Consonni V. Handbook of Molecular Descriptors. Weinheim: Wiley–VCH, 2000

DOI

9
Tomescu I, Jamil M K. Maximum general sum-connectivity index for trees with given independence number. MATCH Commun Math Comput Chem, 2014, 72: 715–722

10
Tomescu I, Kanwal S. Ordering trees having small general sum-connectivity index. MATCH Commun Math Comput Chem, 2013, 69: 535–548

11
Wang S, Zhou B, Trinajstic N. On the sum-connectivity index. Filomat, 2011, 25(3):29–42

DOI

12
Xing R, Zhou B, Trinajstic N. Sum-connectivity index of molecular trees. J Math Chem, 2010, 48: 583–591

DOI

13
Zhou B, Trinajstić N. On a novel connectivity index. J Math Chem, 2009, 46: 1252–1270

DOI

Outlines

/