Sum-connectivity index of a graph

Kinkar Ch. DAS , Sumana DAS , Bo ZHOU

Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 47 -54.

PDF (101KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (1) : 47 -54. DOI: 10.1007/s11464-015-0470-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Sum-connectivity index of a graph

Author information +
History +
PDF (101KB)

Abstract

Let G be a simple connected graph, and let di be the degree of its i-th vertex. The sum-connectivity index of the graph G is defined as χ(G)=ΣvivjE(G) (di+dj)1/2. We discuss the effect on χ(G) of inserting an edge into a graph. Moreover, we obtain the relations between sum-connectivity index and Randić index.

Keywords

Graph / Randićindex / sum-connectivity index / minimum degree

Cite this article

Download citation ▾
Kinkar Ch. DAS, Sumana DAS, Bo ZHOU. Sum-connectivity index of a graph. Front. Math. China, 2016, 11(1): 47-54 DOI:10.1007/s11464-015-0470-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lučić B, Trinajstíc N, Zhou B. Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons, Chem Phys Lett, 2009, 475:146–148

[2]

Luˇcíc B,Nikolíc S,Trinajstíc N, Zhou B, Turk S I. Sum-connectivity index. In: Gutman I, Furtula B, eds. Novel Molecular Structure Descriptors—Theory and Applications I. University of Kragujevac, Kragujevac, 2010, 101–136

[3]

Du Z, Zhou B, Trinajstić N. Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number. J Math Chem, 2010, 47: 842–855

[4]

Li X, Gutman I. Mathematical Aspects of Randić-type Molecular Structure Descriptors. Mathematical Chemistry Monographs, No 1. Kragujevac: University of Kragujevac 2006

[5]

Li X, Shi Y, A survey on the Randić index. MATCH Commun Math Comput Chem, 2008, 59(1): 127–156

[6]

Randić M. On characterization of molecular branching. J Am Chem Soc, 1975, 97: 6609–6615

[7]

Tache R M. General sum-connectivity index with alpha>= 1 for bicyclic graphs. MATCH Commun Math Comput Chem, 2014, 72: 761–774

[8]

Todeschini R, Consonni V. Handbook of Molecular Descriptors. Weinheim: Wiley–VCH, 2000

[9]

Tomescu I, Jamil M K. Maximum general sum-connectivity index for trees with given independence number. MATCH Commun Math Comput Chem, 2014, 72: 715–722

[10]

Tomescu I, Kanwal S. Ordering trees having small general sum-connectivity index. MATCH Commun Math Comput Chem, 2013, 69: 535–548

[11]

Wang S, Zhou B, Trinajstic N. On the sum-connectivity index. Filomat, 2011, 25(3):29–42

[12]

Xing R, Zhou B, Trinajstic N. Sum-connectivity index of molecular trees. J Math Chem, 2010, 48: 583–591

[13]

Zhou B, Trinajstić N. On a novel connectivity index. J Math Chem, 2009, 46: 1252–1270

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (101KB)

1031

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/