Frontiers of Mathematics in China >
Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients
Received date: 16 Apr 2015
Accepted date: 20 Apr 2015
Published date: 05 Jun 2015
Copyright
We consider the diffusion process Xt on with radial diffusion and drift coefficients. We prove that once the one-dimensional diffusion |Xt| has algebraic L2-convergence, so does Xt. And some classical examples are discussed.
Yutao MA , Yingzhe WANG . Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients[J]. Frontiers of Mathematics in China, 2015 , 10(4) : 965 -984 . DOI: 10.1007/s11464-015-0476-9
1 |
Bobkov S G. Spectral gap and concentration for some spherically symmetric probability measures. In: Geometric Aspects of Functional Analysis. Lecture Notes in Math, Vol 1807. Berlin: Springer, 2003, 37-43
|
2 |
Bobkov S G, Ledoux M. Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann Probab, 2009, 37: 403-427
|
3 |
Bonnefont M, Joulin A, Ma Y T. Spectral gap for spherically symmetric log-concave probability measures, and beyond. Preprint, 2014
|
4 |
Chen M F. From Markov Chains to Non-equilibrium Particle Systems. Singapore: World Scientific, 1992
|
5 |
Chen M F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci Sin A, 1999, 42(8): 805-815
|
6 |
Chen M F, Li S F. Coupling Methods for Multidimensional diffusion processes. Ann Probab, 1989, 17(1): 151-177
|
7 |
Chen M F, Wang Y Z. Algebraic convergence of Markov chains. Ann Appl Probab, 2003, 13(2): 604-627
|
8 |
Deuschel J D. Algebraic L2-decay of attractive critical processes on the lattice. Ann Probab, 1994, 22(1): 264-283
|
9 |
Djellout H, Wu L M. Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann Inst Henri Poincaré Probab Stat, 2011, 47(2): 450-465
|
10 |
Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Processes. Tokyo: Kodansha Ltd, 1981
|
11 |
Liggett T M. L2 Rates of convergence for attractive reversible nearest particle systems: the critical case. Ann Probab, 1991, 19(3): 935-959
|
12 |
Lindvall T, Rogers L C G. Coupling of multidimensional diffusions by reflection. Ann Probab, 1986, 14: 860-872
|
13 |
Rockner M, Wang F-Y. Weak Poincaré inequalities and L2-convergence rates of Markov semigroup. J Funct Analysis, 2011, 185(2): 564-603
|
14 |
Wang Y Z. Algebraic convergence of diffusion processes on a real line. J Beijing Normal Univ, 2003, 39: 448-456
|
15 |
Wang Y Z. Algebraic convergence of diffusion processes on
|
/
〈 | 〉 |