Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients
Yutao MA, Yingzhe WANG
Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients
We consider the diffusion process Xt on with radial diffusion and drift coefficients. We prove that once the one-dimensional diffusion |Xt| has algebraic L2-convergence, so does Xt. And some classical examples are discussed.
Diffusion processes / algebraic convergence / classical coupling / coupling by reflection / spherically invariant
[1] |
Bobkov S G. Spectral gap and concentration for some spherically symmetric probability measures. In: Geometric Aspects of Functional Analysis. Lecture Notes in Math, Vol 1807. Berlin: Springer, 2003, 37-43
CrossRef
Google scholar
|
[2] |
Bobkov S G, Ledoux M. Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann Probab, 2009, 37: 403-427
CrossRef
Google scholar
|
[3] |
Bonnefont M, Joulin A, Ma Y T. Spectral gap for spherically symmetric log-concave probability measures, and beyond. Preprint, 2014
|
[4] |
Chen M F. From Markov Chains to Non-equilibrium Particle Systems. Singapore: World Scientific, 1992
CrossRef
Google scholar
|
[5] |
Chen M F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci Sin A, 1999, 42(8): 805-815
|
[6] |
Chen M F, Li S F. Coupling Methods for Multidimensional diffusion processes. Ann Probab, 1989, 17(1): 151-177
CrossRef
Google scholar
|
[7] |
Chen M F, Wang Y Z. Algebraic convergence of Markov chains. Ann Appl Probab, 2003, 13(2): 604-627
CrossRef
Google scholar
|
[8] |
Deuschel J D. Algebraic L2-decay of attractive critical processes on the lattice. Ann Probab, 1994, 22(1): 264-283
CrossRef
Google scholar
|
[9] |
Djellout H, Wu L M. Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann Inst Henri Poincaré Probab Stat, 2011, 47(2): 450-465
CrossRef
Google scholar
|
[10] |
Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Processes. Tokyo: Kodansha Ltd, 1981
|
[11] |
Liggett T M. L2 Rates of convergence for attractive reversible nearest particle systems: the critical case. Ann Probab, 1991, 19(3): 935-959
CrossRef
Google scholar
|
[12] |
Lindvall T, Rogers L C G. Coupling of multidimensional diffusions by reflection. Ann Probab, 1986, 14: 860-872
CrossRef
Google scholar
|
[13] |
Rockner M, Wang F-Y. Weak Poincaré inequalities and L2-convergence rates of Markov semigroup. J Funct Analysis, 2011, 185(2): 564-603
CrossRef
Google scholar
|
[14] |
Wang Y Z. Algebraic convergence of diffusion processes on a real line. J Beijing Normal Univ, 2003, 39: 448-456
|
[15] |
Wang Y Z. Algebraic convergence of diffusion processes on
|
/
〈 | 〉 |