Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients

Yutao MA, Yingzhe WANG

Front. Math. China ›› 2015, Vol. 10 ›› Issue (4) : 965-984.

PDF(177 KB)
PDF(177 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (4) : 965-984. DOI: 10.1007/s11464-015-0476-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients

Author information +
History +

Abstract

We consider the diffusion process Xt on n with radial diffusion and drift coefficients. We prove that once the one-dimensional diffusion |Xt| has algebraic L2-convergence, so does Xt. And some classical examples are discussed.

Keywords

Diffusion processes / algebraic convergence / classical coupling / coupling by reflection / spherically invariant

Cite this article

Download citation ▾
Yutao MA, Yingzhe WANG. Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients. Front. Math. China, 2015, 10(4): 965‒984 https://doi.org/10.1007/s11464-015-0476-9

References

[1]
Bobkov S G. Spectral gap and concentration for some spherically symmetric probability measures. In: Geometric Aspects of Functional Analysis. Lecture Notes in Math, Vol 1807. Berlin: Springer, 2003, 37-43
CrossRef Google scholar
[2]
Bobkov S G, Ledoux M. Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann Probab, 2009, 37: 403-427
CrossRef Google scholar
[3]
Bonnefont M, Joulin A, Ma Y T. Spectral gap for spherically symmetric log-concave probability measures, and beyond. Preprint, 2014
[4]
Chen M F. From Markov Chains to Non-equilibrium Particle Systems. Singapore: World Scientific, 1992
CrossRef Google scholar
[5]
Chen M F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci Sin A, 1999, 42(8): 805-815
[6]
Chen M F, Li S F. Coupling Methods for Multidimensional diffusion processes. Ann Probab, 1989, 17(1): 151-177
CrossRef Google scholar
[7]
Chen M F, Wang Y Z. Algebraic convergence of Markov chains. Ann Appl Probab, 2003, 13(2): 604-627
CrossRef Google scholar
[8]
Deuschel J D. Algebraic L2-decay of attractive critical processes on the lattice. Ann Probab, 1994, 22(1): 264-283
CrossRef Google scholar
[9]
Djellout H, Wu L M. Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann Inst Henri Poincaré Probab Stat, 2011, 47(2): 450-465
CrossRef Google scholar
[10]
Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Processes. Tokyo: Kodansha Ltd, 1981
[11]
Liggett T M. L2 Rates of convergence for attractive reversible nearest particle systems: the critical case. Ann Probab, 1991, 19(3): 935-959
CrossRef Google scholar
[12]
Lindvall T, Rogers L C G. Coupling of multidimensional diffusions by reflection. Ann Probab, 1986, 14: 860-872
CrossRef Google scholar
[13]
Rockner M, Wang F-Y. Weak Poincaré inequalities and L2-convergence rates of Markov semigroup. J Funct Analysis, 2011, 185(2): 564-603
CrossRef Google scholar
[14]
Wang Y Z. Algebraic convergence of diffusion processes on a real line. J Beijing Normal Univ, 2003, 39: 448-456
[15]
Wang Y Z. Algebraic convergence of diffusion processes on ℝn. Acta Math Sinica (Chin Ser), 2004, 47(5): 1001-1012 (in Chinese)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(177 KB)

Accesses

Citations

Detail

Sections
Recommended

/