Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients

Yutao MA, Yingzhe WANG

PDF(177 KB)
PDF(177 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (4) : 965-984. DOI: 10.1007/s11464-015-0476-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients

Author information +
History +

Abstract

We consider the diffusion process Xt on n with radial diffusion and drift coefficients. We prove that once the one-dimensional diffusion |Xt| has algebraic L2-convergence, so does Xt. And some classical examples are discussed.

Keywords

Diffusion processes / algebraic convergence / classical coupling / coupling by reflection / spherically invariant

Cite this article

Download citation ▾
Yutao MA, Yingzhe WANG. Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients. Front. Math. China, 2015, 10(4): 965‒984 https://doi.org/10.1007/s11464-015-0476-9

References

[1]
Bobkov S G. Spectral gap and concentration for some spherically symmetric probability measures. In: Geometric Aspects of Functional Analysis. Lecture Notes in Math, Vol 1807. Berlin: Springer, 2003, 37-43
CrossRef Google scholar
[2]
Bobkov S G, Ledoux M. Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann Probab, 2009, 37: 403-427
CrossRef Google scholar
[3]
Bonnefont M, Joulin A, Ma Y T. Spectral gap for spherically symmetric log-concave probability measures, and beyond. Preprint, 2014
[4]
Chen M F. From Markov Chains to Non-equilibrium Particle Systems. Singapore: World Scientific, 1992
CrossRef Google scholar
[5]
Chen M F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci Sin A, 1999, 42(8): 805-815
[6]
Chen M F, Li S F. Coupling Methods for Multidimensional diffusion processes. Ann Probab, 1989, 17(1): 151-177
CrossRef Google scholar
[7]
Chen M F, Wang Y Z. Algebraic convergence of Markov chains. Ann Appl Probab, 2003, 13(2): 604-627
CrossRef Google scholar
[8]
Deuschel J D. Algebraic L2-decay of attractive critical processes on the lattice. Ann Probab, 1994, 22(1): 264-283
CrossRef Google scholar
[9]
Djellout H, Wu L M. Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann Inst Henri Poincaré Probab Stat, 2011, 47(2): 450-465
CrossRef Google scholar
[10]
Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Processes. Tokyo: Kodansha Ltd, 1981
[11]
Liggett T M. L2 Rates of convergence for attractive reversible nearest particle systems: the critical case. Ann Probab, 1991, 19(3): 935-959
CrossRef Google scholar
[12]
Lindvall T, Rogers L C G. Coupling of multidimensional diffusions by reflection. Ann Probab, 1986, 14: 860-872
CrossRef Google scholar
[13]
Rockner M, Wang F-Y. Weak Poincaré inequalities and L2-convergence rates of Markov semigroup. J Funct Analysis, 2011, 185(2): 564-603
CrossRef Google scholar
[14]
Wang Y Z. Algebraic convergence of diffusion processes on a real line. J Beijing Normal Univ, 2003, 39: 448-456
[15]
Wang Y Z. Algebraic convergence of diffusion processes on ℝn. Acta Math Sinica (Chin Ser), 2004, 47(5): 1001-1012 (in Chinese)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(177 KB)

Accesses

Citations

Detail

Sections
Recommended

/