RESEARCH ARTICLE

A fundamental representation of quantum generalized Kac-Moody algebras with one imaginary simple root

  • Jiangrong CHEN 1 ,
  • Zhonghua ZHAO , 2
Expand
  • 1. School of Statistics, Capital University of Economics and Business, Beijing 100070, China
  • 2. Department of Mathematics and Computer Science, School of Science, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 19 Dec 2013

Accepted date: 09 Apr 2015

Published date: 24 Jun 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We consider the Borcherds-Cartan matrix obtained from a symmetrizable generalized Cartan matrix by adding one imaginary simple root. We extend the result of Gebert and Teschner [Lett. Math. Phys., 1994, 31: 327-334] to the quantum case. Moreover, we give a connection between the irreducible dominant representations of quantum Kac-Moody algebras and those of quantum generalized Kac-Moody algebras. As the result, a large class of irreducible dominant representations of quantum generalized Kac-Moody algebras were obtained from representations of quantum Kac-Moody algebras through tensor algebras.

Cite this article

Jiangrong CHEN , Zhonghua ZHAO . A fundamental representation of quantum generalized Kac-Moody algebras with one imaginary simple root[J]. Frontiers of Mathematics in China, 2015 , 10(5) : 1041 -1056 . DOI: 10.1007/s11464-015-0471-1

1
Benkart G, Kang S J, Melville D. Quantized enveloping algebras for Borcherds superalgebras. Trans Amer Math Soc, 1998, 350(8): 3297-3319

DOI

2
Borcherds R E. Generalized Kac-Moody algebras. J Algebra. 1988, 115: 501-512

DOI

3
Borcherds R E. Monstrous moonshine and monstrous Lie superalgebras. Invent Math, 1992, 109: 405-444

DOI

4
Deng B, Du J, Parashall B, Wang J. Finite Dimensional Algebras and Quantum Groups. Math Surveys Monogr, Vol 150. Providence: Amer Math Soc, 2008

DOI

5
Drinfeld V G. Quantum groups. In: Proc Int Congr Math Berkeley 1986. Providence: Amer Math Soc, 1987, 798-820

6
Gebert R, Teschner J. On the fundamental representation of Borcherds algebras with one imaginary simple root. Lett Math Phys, 1994, 31: 327-334

DOI

7
Jeong K, Kang S J, Kashiwara M. Crystal bases for quantum generalized Kac-Moody algebras. Proc Lond Math Soc, 2005, 90(3): 395-438

DOI

8
Jimbo M. A q-difference analogue of U(g) and the Yang-Baxter equation. Lett Math Phys, 1985, 10: 63-69

DOI

9
Jurisich E. An exposition of generalized Kac-Moody algebras, Lie algebras and their representations. Contemp Math, 194. Providence: Amer Math Soc, 1996, 121-159

10
Jurisich E. Generalized Kac-Moody Lie algebras, free Lie algebras and the structure of the Monster Lie algebra. J Pure Appl Algebra, 1998, 126(1-3): 233-266

DOI

11
Kac V G. Infinite-dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge University Press, 1990

DOI

12
Kang S J. Quantum deformations of generalized Kac-Moody algebras and their modules. J Algebra, 1995, 175(3): 1041-1066

DOI

13
Lusztig G. Quantum deformations of certain simple modules over enveloping algebras. Adv Math, 1988, 70(2): 237-249

DOI

14
Lusztig G. Introduction to Quantum Groups. Progress in Math, Vol 110. Boston: Birkhäuser, 1993

Outlines

/