A fundamental representation of quantum generalized Kac-Moody algebras with one imaginary simple root
Jiangrong CHEN, Zhonghua ZHAO
A fundamental representation of quantum generalized Kac-Moody algebras with one imaginary simple root
We consider the Borcherds-Cartan matrix obtained from a symmetrizable generalized Cartan matrix by adding one imaginary simple root. We extend the result of Gebert and Teschner [Lett. Math. Phys., 1994, 31: 327-334] to the quantum case. Moreover, we give a connection between the irreducible dominant representations of quantum Kac-Moody algebras and those of quantum generalized Kac-Moody algebras. As the result, a large class of irreducible dominant representations of quantum generalized Kac-Moody algebras were obtained from representations of quantum Kac-Moody algebras through tensor algebras.
Quantum generalized Kac-Moody algebra / tensor algebra / fundamental representation
[1] |
Benkart G, Kang S J, Melville D. Quantized enveloping algebras for Borcherds superalgebras. Trans Amer Math Soc, 1998, 350(8): 3297-3319
CrossRef
Google scholar
|
[2] |
Borcherds R E. Generalized Kac-Moody algebras. J Algebra. 1988, 115: 501-512
CrossRef
Google scholar
|
[3] |
Borcherds R E. Monstrous moonshine and monstrous Lie superalgebras. Invent Math, 1992, 109: 405-444
CrossRef
Google scholar
|
[4] |
Deng B, Du J, Parashall B, Wang J. Finite Dimensional Algebras and Quantum Groups. Math Surveys Monogr, Vol 150. Providence: Amer Math Soc, 2008
CrossRef
Google scholar
|
[5] |
Drinfeld V G. Quantum groups. In: Proc Int Congr Math Berkeley 1986. Providence: Amer Math Soc, 1987, 798-820
|
[6] |
Gebert R, Teschner J. On the fundamental representation of Borcherds algebras with one imaginary simple root. Lett Math Phys, 1994, 31: 327-334
CrossRef
Google scholar
|
[7] |
Jeong K, Kang S J, Kashiwara M. Crystal bases for quantum generalized Kac-Moody algebras. Proc Lond Math Soc, 2005, 90(3): 395-438
CrossRef
Google scholar
|
[8] |
Jimbo M. A q-difference analogue of U(g) and the Yang-Baxter equation. Lett Math Phys, 1985, 10: 63-69
CrossRef
Google scholar
|
[9] |
Jurisich E. An exposition of generalized Kac-Moody algebras, Lie algebras and their representations. Contemp Math, 194. Providence: Amer Math Soc, 1996, 121-159
|
[10] |
Jurisich E. Generalized Kac-Moody Lie algebras, free Lie algebras and the structure of the Monster Lie algebra. J Pure Appl Algebra, 1998, 126(1-3): 233-266
CrossRef
Google scholar
|
[11] |
Kac V G. Infinite-dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge University Press, 1990
CrossRef
Google scholar
|
[12] |
Kang S J. Quantum deformations of generalized Kac-Moody algebras and their modules. J Algebra, 1995, 175(3): 1041-1066
CrossRef
Google scholar
|
[13] |
Lusztig G. Quantum deformations of certain simple modules over enveloping algebras. Adv Math, 1988, 70(2): 237-249
CrossRef
Google scholar
|
[14] |
Lusztig G. Introduction to Quantum Groups. Progress in Math, Vol 110. Boston: Birkhäuser, 1993
|
/
〈 | 〉 |