A fundamental representation of quantum generalized Kac-Moody algebras with one imaginary simple root

Jiangrong CHEN, Zhonghua ZHAO

PDF(167 KB)
PDF(167 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1041-1056. DOI: 10.1007/s11464-015-0471-1
RESEARCH ARTICLE
RESEARCH ARTICLE

A fundamental representation of quantum generalized Kac-Moody algebras with one imaginary simple root

Author information +
History +

Abstract

We consider the Borcherds-Cartan matrix obtained from a symmetrizable generalized Cartan matrix by adding one imaginary simple root. We extend the result of Gebert and Teschner [Lett. Math. Phys., 1994, 31: 327-334] to the quantum case. Moreover, we give a connection between the irreducible dominant representations of quantum Kac-Moody algebras and those of quantum generalized Kac-Moody algebras. As the result, a large class of irreducible dominant representations of quantum generalized Kac-Moody algebras were obtained from representations of quantum Kac-Moody algebras through tensor algebras.

Keywords

Quantum generalized Kac-Moody algebra / tensor algebra / fundamental representation

Cite this article

Download citation ▾
Jiangrong CHEN, Zhonghua ZHAO. A fundamental representation of quantum generalized Kac-Moody algebras with one imaginary simple root. Front. Math. China, 2015, 10(5): 1041‒1056 https://doi.org/10.1007/s11464-015-0471-1

References

[1]
Benkart G, Kang S J, Melville D. Quantized enveloping algebras for Borcherds superalgebras. Trans Amer Math Soc, 1998, 350(8): 3297-3319
CrossRef Google scholar
[2]
Borcherds R E. Generalized Kac-Moody algebras. J Algebra. 1988, 115: 501-512
CrossRef Google scholar
[3]
Borcherds R E. Monstrous moonshine and monstrous Lie superalgebras. Invent Math, 1992, 109: 405-444
CrossRef Google scholar
[4]
Deng B, Du J, Parashall B, Wang J. Finite Dimensional Algebras and Quantum Groups. Math Surveys Monogr, Vol 150. Providence: Amer Math Soc, 2008
CrossRef Google scholar
[5]
Drinfeld V G. Quantum groups. In: Proc Int Congr Math Berkeley 1986. Providence: Amer Math Soc, 1987, 798-820
[6]
Gebert R, Teschner J. On the fundamental representation of Borcherds algebras with one imaginary simple root. Lett Math Phys, 1994, 31: 327-334
CrossRef Google scholar
[7]
Jeong K, Kang S J, Kashiwara M. Crystal bases for quantum generalized Kac-Moody algebras. Proc Lond Math Soc, 2005, 90(3): 395-438
CrossRef Google scholar
[8]
Jimbo M. A q-difference analogue of U(g) and the Yang-Baxter equation. Lett Math Phys, 1985, 10: 63-69
CrossRef Google scholar
[9]
Jurisich E. An exposition of generalized Kac-Moody algebras, Lie algebras and their representations. Contemp Math, 194. Providence: Amer Math Soc, 1996, 121-159
[10]
Jurisich E. Generalized Kac-Moody Lie algebras, free Lie algebras and the structure of the Monster Lie algebra. J Pure Appl Algebra, 1998, 126(1-3): 233-266
CrossRef Google scholar
[11]
Kac V G. Infinite-dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge University Press, 1990
CrossRef Google scholar
[12]
Kang S J. Quantum deformations of generalized Kac-Moody algebras and their modules. J Algebra, 1995, 175(3): 1041-1066
CrossRef Google scholar
[13]
Lusztig G. Quantum deformations of certain simple modules over enveloping algebras. Adv Math, 1988, 70(2): 237-249
CrossRef Google scholar
[14]
Lusztig G. Introduction to Quantum Groups. Progress in Math, Vol 110. Boston: Birkhäuser, 1993

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(167 KB)

Accesses

Citations

Detail

Sections
Recommended

/