RESEARCH ARTICLE

Quadratic forms connected with Fourier coefficients of Maass cusp forms

  • Liqun HU , 1,2
Expand
  • 1. Department of Mathematics, Shandong University, Jinan 250100, China
  • 2. Department of Mathematics, Nanchang University, Nanchang 330031, China

Received date: 14 Mar 2014

Accepted date: 11 Jul 2014

Published date: 24 Jun 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

For the normalized Fourier coefficients of Maass cusp forms λ(n) and the normalized Fourier coefficients of holomorphic cusp forms a(n), we give the bound of m12+m22+m32xλ(m12+m22+m32)Λ(m12+m22+m32) and m12+m22+m32xa(m12+m22+m32)Λ(m12+m22+m32).

Cite this article

Liqun HU . Quadratic forms connected with Fourier coefficients of Maass cusp forms[J]. Frontiers of Mathematics in China, 2015 , 10(5) : 1101 -1112 . DOI: 10.1007/s11464-015-0416-8

1
Chamizo F, Iwaniec H. On the sphere problem. Rev Mat Iberoam, 1995, 11: 417-429

DOI

2
Chen J. Improvement of asymptotic formulas for the number of lattice points in a region of three dimensions (II). Sci Sin, 1963, 12: 751-764

3
Friedlander J B, Iwaniec H. Hyperbolic prime number theorem. Acta Math, 2009, 202: 1-19

DOI

4
Guo Ruting, Zhai Wenguang. Some problem about the ternary quadratic form m12+m22+m32. Acta Arith, 2012, 156(2): 101-121

5
Heath-Brown D R. The Pjateckii-Shapiro prime number theorem. J Number Theory, 1983, 16: 242-266

DOI

6
Heath-Brown D R. Lattice points in the sphere. In: Number Theory in Progress. Berlin: Walter de Gruyter, 1999, 883-892

DOI

7
Hua L K. Introduction to Number Theory. Beijing: Science Press, 1957 (in Chinese)

8
Pan Chengdong, Pan Chengbiao. Goldbach Conjecture. Beijing: Science Press, 1981 (in Chinese)

9
Perelli A. On some exponential sums connected with Ramanujan’s τ -function. Mathem<?Pub Caret?>atika, 1984, 31(1): 150-158

DOI

10
Vinogradov I M. On the number of integer points in a sphere. Izv Akad Nauk SSSR Ser Mat, 1963, 27: 957-968

Outlines

/