Frontiers of Mathematics in China >
Quadratic forms connected with Fourier coefficients of Maass cusp forms
Received date: 14 Mar 2014
Accepted date: 11 Jul 2014
Published date: 24 Jun 2015
Copyright
For the normalized Fourier coefficients of Maass cusp forms λ(n) and the normalized Fourier coefficients of holomorphic cusp forms a(n), we give the bound of and .
Liqun HU . Quadratic forms connected with Fourier coefficients of Maass cusp forms[J]. Frontiers of Mathematics in China, 2015 , 10(5) : 1101 -1112 . DOI: 10.1007/s11464-015-0416-8
1 |
Chamizo F, Iwaniec H. On the sphere problem. Rev Mat Iberoam, 1995, 11: 417-429
|
2 |
Chen J. Improvement of asymptotic formulas for the number of lattice points in a region of three dimensions (II). Sci Sin, 1963, 12: 751-764
|
3 |
Friedlander J B, Iwaniec H. Hyperbolic prime number theorem. Acta Math, 2009, 202: 1-19
|
4 |
Guo Ruting, Zhai Wenguang. Some problem about the ternary quadratic form
|
5 |
Heath-Brown D R. The Pjateckii-Shapiro prime number theorem. J Number Theory, 1983, 16: 242-266
|
6 |
Heath-Brown D R. Lattice points in the sphere. In: Number Theory in Progress. Berlin: Walter de Gruyter, 1999, 883-892
|
7 |
Hua L K. Introduction to Number Theory. Beijing: Science Press, 1957 (in Chinese)
|
8 |
Pan Chengdong, Pan Chengbiao. Goldbach Conjecture. Beijing: Science Press, 1981 (in Chinese)
|
9 |
Perelli A. On some exponential sums connected with Ramanujan’s τ -function. Mathem<?Pub Caret?>atika, 1984, 31(1): 150-158
|
10 |
Vinogradov I M. On the number of integer points in a sphere. Izv Akad Nauk SSSR Ser Mat, 1963, 27: 957-968
|
/
〈 | 〉 |