RESEARCH ARTICLE

Classification of tilting bundles over a weighted projective line of type (2, 3, 3)

  • Yanan LIN ,
  • Xiaolong QIU
Expand
  • School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

Received date: 05 Jan 2015

Accepted date: 27 Mar 2015

Published date: 24 Jun 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We give a complete classification of tilting bundles over a weighted projective line of type (2, 3, 3). This yields another realization of the tame concealed algebras of type E6.

Cite this article

Yanan LIN , Xiaolong QIU . Classification of tilting bundles over a weighted projective line of type (2, 3, 3)[J]. Frontiers of Mathematics in China, 2015 , 10(5) : 1147 -1167 . DOI: 10.1007/s11464-015-0472-0

1
Brenner S, Butler M C R. Generalizations of the Bernstein-Gelfand-Pnnomarev reflection functors. In: Dlab V, Gabriel P, Representation Theory II: Proceedings of the Second International Conference on Representations of Algebras, Ottawa, Carleton University, August 13-25, 1979. Lecture Notes in Math, Vol 832. Berlin: Springer, 1980, 103-169

2
Chen J, Lin Y, Ruan S. Tilting bundles and missing part on a weighted projective line of type (2, 2, n). J Pure Appl Algebra, http://dx.doi.org/10.1016/j.jpaa. 2014.09.15

3
Geigle W, Lenzing H. A class of weighted projective curves arising in representation theory of finite dimensional algebras. In: Singularities, Representation of Algebras, and Vector Bundles. Berlin: Springer, 1987, 265-297

DOI

4
Happel D, Ringel C M. Tilted algebras. Trans Amer Math Soc, 1982, 274(2): 399-443

DOI

5
Happel D, Vossieck D. Minimal algebras of infinite representation type with preprojective component. Manuscripta Math, 1983, 42: 221-243

DOI

6
Hügel L A, Happel D, Krause H. Handbook of Tilting Theory. London Math Soc Lecture Note Ser, 332. Cambridge: Cambridge University Press, 2007

DOI

7
Kussin D, Lenzing H, Meltzer H. Triangle singularities, ADE-chains, and weighted projective lines. Adv Math, 2013, 237: 194-251

DOI

8
Meltzer H. Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines. Mem Amer Math Soc, Vol 171, No 808. Providence: Amer Math Soc, 2004

9
Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, Vol 1099. Berlin: Springer, 1984

10
Serre J-P. Faisceaux algébriques cohérents. Ann Math, 1955, 61(2): 197-278

DOI

Outlines

/