Frontiers of Mathematics in China >
Classification of tilting bundles over a weighted projective line of type (2, 3, 3)
Received date: 05 Jan 2015
Accepted date: 27 Mar 2015
Published date: 24 Jun 2015
Copyright
We give a complete classification of tilting bundles over a weighted projective line of type (2, 3, 3). This yields another realization of the tame concealed algebras of type E6.
Yanan LIN , Xiaolong QIU . Classification of tilting bundles over a weighted projective line of type (2, 3, 3)[J]. Frontiers of Mathematics in China, 2015 , 10(5) : 1147 -1167 . DOI: 10.1007/s11464-015-0472-0
1 |
Brenner S, Butler M C R. Generalizations of the Bernstein-Gelfand-Pnnomarev reflection functors. In: Dlab V, Gabriel P,
|
2 |
Chen J, Lin Y, Ruan S. Tilting bundles and missing part on a weighted projective line of type (2, 2, n). J Pure Appl Algebra, http://dx.doi.org/10.1016/j.jpaa. 2014.09.15
|
3 |
Geigle W, Lenzing H. A class of weighted projective curves arising in representation theory of finite dimensional algebras. In: Singularities, Representation of Algebras, and Vector Bundles. Berlin: Springer, 1987, 265-297
|
4 |
Happel D, Ringel C M. Tilted algebras. Trans Amer Math Soc, 1982, 274(2): 399-443
|
5 |
Happel D, Vossieck D. Minimal algebras of infinite representation type with preprojective component. Manuscripta Math, 1983, 42: 221-243
|
6 |
Hügel L A, Happel D, Krause H. Handbook of Tilting Theory. London Math Soc Lecture Note Ser, 332. Cambridge: Cambridge University Press, 2007
|
7 |
Kussin D, Lenzing H, Meltzer H. Triangle singularities, ADE-chains, and weighted projective lines. Adv Math, 2013, 237: 194-251
|
8 |
Meltzer H. Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines. Mem Amer Math Soc, Vol 171, No 808. Providence: Amer Math Soc, 2004
|
9 |
Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, Vol 1099. Berlin: Springer, 1984
|
10 |
Serre J-P. Faisceaux algébriques cohérents. Ann Math, 1955, 61(2): 197-278
|
/
〈 | 〉 |