Classification of tilting bundles over a weighted projective line of type (2, 3, 3)
Yanan LIN, Xiaolong QIU
Classification of tilting bundles over a weighted projective line of type (2, 3, 3)
We give a complete classification of tilting bundles over a weighted projective line of type (2, 3, 3). This yields another realization of the tame concealed algebras of type E6.
Tilting bundle / tame concealed algebra / weighted projective line / vector bundle
[1] |
Brenner S, Butler M C R. Generalizations of the Bernstein-Gelfand-Pnnomarev reflection functors. In: Dlab V, Gabriel P,
|
[2] |
Chen J, Lin Y, Ruan S. Tilting bundles and missing part on a weighted projective line of type (2, 2, n). J Pure Appl Algebra, http://dx.doi.org/10.1016/j.jpaa. 2014.09.15
|
[3] |
Geigle W, Lenzing H. A class of weighted projective curves arising in representation theory of finite dimensional algebras. In: Singularities, Representation of Algebras, and Vector Bundles. Berlin: Springer, 1987, 265-297
CrossRef
Google scholar
|
[4] |
Happel D, Ringel C M. Tilted algebras. Trans Amer Math Soc, 1982, 274(2): 399-443
CrossRef
Google scholar
|
[5] |
Happel D, Vossieck D. Minimal algebras of infinite representation type with preprojective component. Manuscripta Math, 1983, 42: 221-243
CrossRef
Google scholar
|
[6] |
Hügel L A, Happel D, Krause H. Handbook of Tilting Theory. London Math Soc Lecture Note Ser, 332. Cambridge: Cambridge University Press, 2007
CrossRef
Google scholar
|
[7] |
Kussin D, Lenzing H, Meltzer H. Triangle singularities, ADE-chains, and weighted projective lines. Adv Math, 2013, 237: 194-251
CrossRef
Google scholar
|
[8] |
Meltzer H. Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines. Mem Amer Math Soc, Vol 171, No 808. Providence: Amer Math Soc, 2004
|
[9] |
Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, Vol 1099. Berlin: Springer, 1984
|
[10] |
Serre J-P. Faisceaux algébriques cohérents. Ann Math, 1955, 61(2): 197-278
CrossRef
Google scholar
|
/
〈 | 〉 |