Classification of tilting bundles over a weighted projective line of type (2, 3, 3)

Yanan LIN , Xiaolong QIU

Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1147 -1167.

PDF (174KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1147 -1167. DOI: 10.1007/s11464-015-0472-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Classification of tilting bundles over a weighted projective line of type (2, 3, 3)

Author information +
History +
PDF (174KB)

Abstract

We give a complete classification of tilting bundles over a weighted projective line of type (2, 3, 3). This yields another realization of the tame concealed algebras of type E6.

Keywords

Tilting bundle / tame concealed algebra / weighted projective line / vector bundle

Cite this article

Download citation ▾
Yanan LIN, Xiaolong QIU. Classification of tilting bundles over a weighted projective line of type (2, 3, 3). Front. Math. China, 2015, 10(5): 1147-1167 DOI:10.1007/s11464-015-0472-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brenner S, Butler M C R. Generalizations of the Bernstein-Gelfand-Pnnomarev reflection functors. In: Dlab V, Gabriel P, Representation Theory II: Proceedings of the Second International Conference on Representations of Algebras, Ottawa, Carleton University, August 13-25, 1979. Lecture Notes in Math, Vol 832. Berlin: Springer, 1980, 103-169

[2]

Chen J, Lin Y, Ruan S. Tilting bundles and missing part on a weighted projective line of type (2, 2, n). J Pure Appl Algebra,

[3]

Geigle W, Lenzing H. A class of weighted projective curves arising in representation theory of finite dimensional algebras. In: Singularities, Representation of Algebras, and Vector Bundles. Berlin: Springer, 1987, 265-297

[4]

Happel D, Ringel C M. Tilted algebras. Trans Amer Math Soc, 1982, 274(2): 399-443

[5]

Happel D, Vossieck D. Minimal algebras of infinite representation type with preprojective component. Manuscripta Math, 1983, 42: 221-243

[6]

Hügel L A, Happel D, Krause H. Handbook of Tilting Theory. London Math Soc Lecture Note Ser, 332. Cambridge: Cambridge University Press, 2007

[7]

Kussin D, Lenzing H, Meltzer H. Triangle singularities, ADE-chains, and weighted projective lines. Adv Math, 2013, 237: 194-251

[8]

Meltzer H. Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines. Mem Amer Math Soc, Vol 171, No 808. Providence: Amer Math Soc, 2004

[9]

Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, Vol 1099. Berlin: Springer, 1984

[10]

Serre J-P. Faisceaux algébriques cohérents. Ann Math, 1955, 61(2): 197-278

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (174KB)

969

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/