Classification of tilting bundles over a weighted projective line of type (2, 3, 3)

Yanan LIN, Xiaolong QIU

PDF(174 KB)
PDF(174 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1147-1167. DOI: 10.1007/s11464-015-0472-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Classification of tilting bundles over a weighted projective line of type (2, 3, 3)

Author information +
History +

Abstract

We give a complete classification of tilting bundles over a weighted projective line of type (2, 3, 3). This yields another realization of the tame concealed algebras of type E6.

Keywords

Tilting bundle / tame concealed algebra / weighted projective line / vector bundle

Cite this article

Download citation ▾
Yanan LIN, Xiaolong QIU. Classification of tilting bundles over a weighted projective line of type (2, 3, 3). Front. Math. China, 2015, 10(5): 1147‒1167 https://doi.org/10.1007/s11464-015-0472-0

References

[1]
Brenner S, Butler M C R. Generalizations of the Bernstein-Gelfand-Pnnomarev reflection functors. In: Dlab V, Gabriel P, Representation Theory II: Proceedings of the Second International Conference on Representations of Algebras, Ottawa, Carleton University, August 13-25, 1979. Lecture Notes in Math, Vol 832. Berlin: Springer, 1980, 103-169
[2]
Chen J, Lin Y, Ruan S. Tilting bundles and missing part on a weighted projective line of type (2, 2, n). J Pure Appl Algebra, http://dx.doi.org/10.1016/j.jpaa. 2014.09.15
[3]
Geigle W, Lenzing H. A class of weighted projective curves arising in representation theory of finite dimensional algebras. In: Singularities, Representation of Algebras, and Vector Bundles. Berlin: Springer, 1987, 265-297
CrossRef Google scholar
[4]
Happel D, Ringel C M. Tilted algebras. Trans Amer Math Soc, 1982, 274(2): 399-443
CrossRef Google scholar
[5]
Happel D, Vossieck D. Minimal algebras of infinite representation type with preprojective component. Manuscripta Math, 1983, 42: 221-243
CrossRef Google scholar
[6]
Hügel L A, Happel D, Krause H. Handbook of Tilting Theory. London Math Soc Lecture Note Ser, 332. Cambridge: Cambridge University Press, 2007
CrossRef Google scholar
[7]
Kussin D, Lenzing H, Meltzer H. Triangle singularities, ADE-chains, and weighted projective lines. Adv Math, 2013, 237: 194-251
CrossRef Google scholar
[8]
Meltzer H. Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines. Mem Amer Math Soc, Vol 171, No 808. Providence: Amer Math Soc, 2004
[9]
Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, Vol 1099. Berlin: Springer, 1984
[10]
Serre J-P. Faisceaux algébriques cohérents. Ann Math, 1955, 61(2): 197-278
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(174 KB)

Accesses

Citations

Detail

Sections
Recommended

/