Frontiers of Mathematics in China >
Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrödinger operators
Received date: 23 Jul 2014
Accepted date: 22 Sep 2014
Published date: 24 Jun 2015
Copyright
Let be a growth function, and let be a magnetic Schrödinger operator on , where and . We establish the equivalent characterizations of the Musielak-Orlicz-Hardy space , defined by the Lusin area function associated with , in terms of the Lusin area function associated with , the radial maximal functions and the nontangential maximal functions associated with and , respectively. The boundedness of the Riesz transforms , from to is also presented, where Lk is the closure of in . These results are new even when for all and t ∈(0,+∞) with p ∈(0, 1] and (the class of Muckenhoupt weights on ).
Dachun YANG , Dongyong YANG . Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrödinger operators[J]. Frontiers of Mathematics in China, 2015 , 10(5) : 1203 -1232 . DOI: 10.1007/s11464-015-0432-8
1 |
Auscher P, Duong X T, McIntosh A. Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished Manuscript, 2005
|
2 |
Bonami A, Grellier S, Ky L D. Paraproducts and products of functions in BMO(Rn) and H1(Rn) through wavelets. J Math Pures Appl (9), 2012, 97: 230-241
|
3 |
Bonami A, Iwaniec T, Jones P, Zinsmeister M. On the product of functions in BMO and H1. Ann Inst Fourier (Grenoble), 2007, 57: 1405-1439
|
4 |
Bui T A, Cao J, Ky L D, Yang D C, Yang S B. Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Taiwanese J Math, 2013, 17: 1127-1166
|
5 |
Bui T A, Cao J, Ky L D, Yang D C, Yang S B. Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal Geom Metr Spaces, 2013, 1: 69-129
|
6 |
Bui T A, Li J. Orlicz-Hardy spaces associated to operators satisfying bounded H∞ functional calculus and Davies-Gaffney estimates. J Math Anal Appl, 2011, 373: 485-501
|
7 |
Cao J, Chang D C, Yang D C, Yang S B. Weighted local Orlicz-Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems. Trans Amer Math Soc, 2013, 365: 4729-4809
|
8 |
Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569-645
|
9 |
Cruz-Uribe D, Neugebauer C J. The structure of the reverse Hölder classes. Trans Amer Math Soc, 1995, 347: 2941-2960
|
10 |
Diening L. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull Sci Math, 2005, 129: 657-700
|
11 |
Diening L, Hästö P, Roudenko S. Function spaces of variable smoothness and integrability. J Funct Anal, 2009, 256: 1731-1768
|
12 |
Duong X T, Li J. Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J Funct Anal, 2013, 264: 1409-1437
|
13 |
Duong X T, Ouhabaz E M, Yan L X. Endpoint estimates for Riesz transforms of magnetic Schrödinger operators. Ark Mat, 2006, 44: 261-275
|
14 |
Duong X T, Xiao J, Yan L X. Old and new Morrey spaces with heat kernel bounds. J Fourier Anal Appl, 2007, 13: 87-111
|
15 |
Duong X T, Yan L X. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J Amer Math Soc, 2005, 18: 943-973
|
16 |
Duong X T, Yan L X. Commutators of Riesz transforms of magnetic Schrödinger operators. Manuscripta Math, 2008, 127: 219-234
|
17 |
Fefferman C, Stein E M. Hp<?Pub Caret?> spaces of several variables. Acta Math, 1972, 129: 137-193
|
18 |
García-Cuerva J. Weighted Hp spaces. Dissertationes Math (Rozprawy Mat), 1979, 162, (63 pp)
|
19 |
Grafakos L. Modern Fourier Analysis. 2nd ed. Grad Texts in Math, Vol 250. New York: Springer, 2009
|
20 |
Hofmann S, Lu G Z, Mitrea D, Mitrea M, Yan L X. Hardy Spaces Associated to Nonnegative Self-adjoint Operators Satisfying Davies-Gaffney Estimates. Mem Amer Math Soc, Vol 214, No 1007. Providence: Amer Math Soc, 2011
|
21 |
Hofmann S, Mayboroda S. Hardy and BMO spaces associated to divergence form elliptic operators. Math Ann, 2009, 344: 37-116
|
22 |
Hofmann S, Mayboroda S, McIntosh A. Second order elliptic operators with complex bounded measurable coefficients in Lp, Sobolev and Hardy spaces. Ann Sci Éc Norm Supér (4), 2011, 44: 723-800
|
23 |
Hou S X, Yang D C, Yang S B. Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun Contemp Math, 2013, 15: 1350029, (37 pp)
|
24 |
Janson S. Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math J, 1980, 47: 959-982
|
25 |
Jiang R J, Yang D C. Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Commun Contemp Math, 2011, 13: 331-373
|
26 |
Jiang R J, Yang D C, Yang D Y. Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators. Forum Math, 2012, 24: 471-494
|
27 |
Johnson R, Neugebauer C J. Homeomorphisms preserving Ap. Rev Mat Iberoam, 1987, 3: 249-273
|
28 |
Ky L D. Bilinear decompositions and commutators of singular integral operators. Trans Amer Math Soc, 2013, 365: 2931-2958
|
29 |
Ky L D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory, 2014, 78: 115-150
|
30 |
Lerner A K. Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces. Math Z, 2005, 251: 509-521
|
31 |
Liang Y Y, Huang J Z, Yang D C. New real-variable characterizations of Musielak-Orlicz Hardy spaces. J Math Anal Appl, 2012, 395: 413-428
|
32 |
Musielak J. Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, Vol 1034. Berlin: Springer-Verlag, 1983
|
33 |
Ouhabaz E M. Analysis of Heat Equations on Domains. Princeton: Princeton Univ Press, 2005
|
34 |
Rao M, Ren Z. Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 146. New York: Marcel Dekker, Inc, 1991
|
35 |
Simon B. Maximal and minimal Schrödinger forms. J Operator Theory, 1979, 1: 37-47
|
36 |
Stein E M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993
|
37 |
Stein E M, Weiss G. On the theory of harmonic functions of several variables. I. The theory of Hp-spaces. Acta Math, 1960, 103: 25-62
|
38 |
Strömberg J O. Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ Math J, 1979, 28: 511-544
|
39 |
Strömberg J O, Torchinsky A. Weighted Hardy Spaces. Lecture Notes in Mathematics, Vol 1381, Berlin: Springer-Verlag, 1989
|
40 |
Yang D C, Yang D Y. Real-variable characterizations of Hardy spaces associated with Bessel operators. Anal Appl (Singap), 2011, 9: 345-368
|
41 |
Yang D C, Yang S B. Orlicz-Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of Rn.Indiana Univ Math J, 2012, 61: 81-129
|
42 |
Yang D C, Yang S B. Musielak-Orlicz-Hardy spaces associated with operators and their applications. J Geom Anal, 2014, 24: 495-570
|
/
〈 | 〉 |