Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrödinger operators

Dachun YANG , Dongyong YANG

Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1203 -1232.

PDF (271KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1203 -1232. DOI: 10.1007/s11464-015-0432-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrödinger operators

Author information +
History +
PDF (271KB)

Abstract

Let φ be a growth function, and let A:=-(-ia)(-ia)+V be a magnetic Schrödinger operator on L2(n),n2, where α:=(α1,α2,,αn)Lloc2(n,n) and 0VLloc1(n). We establish the equivalent characterizations of the Musielak-Orlicz-Hardy space HA,φ(n), defined by the Lusin area function associated with {e-t2A}t>0, in terms of the Lusin area function associated with {e-tA}t>0, the radial maximal functions and the nontangential maximal functions associated with {e-t2A}t>0 and {e-tA}t>0, respectively. The boundedness of the Riesz transforms LkA-1/2,k{1,2,,n}, from HA,φ(n) to Lφ(n) is also presented, where Lk is the closure of xk-iαk in L2(n). These results are new even when φ(x,t):=ω(x)tp for all xnand t ∈(0,+) with p ∈(0, 1] and ωA(n) (the class of Muckenhoupt weights on n).

Keywords

Magnetic Schrödinger operator / Musielak-Orlicz-Hardy space / Lusin area function / growth function / maximal function / Riesz transform

Cite this article

Download citation ▾
Dachun YANG, Dongyong YANG. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrödinger operators. Front. Math. China, 2015, 10(5): 1203-1232 DOI:10.1007/s11464-015-0432-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auscher P, Duong X T, McIntosh A. Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished Manuscript, 2005

[2]

Bonami A, Grellier S, Ky L D. Paraproducts and products of functions in BMO(Rn) and H1(Rn) through wavelets. J Math Pures Appl (9), 2012, 97: 230-241

[3]

Bonami A, Iwaniec T, Jones P, Zinsmeister M. On the product of functions in BMO and H1. Ann Inst Fourier (Grenoble), 2007, 57: 1405-1439

[4]

Bui T A, Cao J, Ky L D, Yang D C, Yang S B. Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Taiwanese J Math, 2013, 17: 1127-1166

[5]

Bui T A, Cao J, Ky L D, Yang D C, Yang S B. Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal Geom Metr Spaces, 2013, 1: 69-129

[6]

Bui T A, Li J. Orlicz-Hardy spaces associated to operators satisfying bounded H functional calculus and Davies-Gaffney estimates. J Math Anal Appl, 2011, 373: 485-501

[7]

Cao J, Chang D C, Yang D C, Yang S B. Weighted local Orlicz-Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems. Trans Amer Math Soc, 2013, 365: 4729-4809

[8]

Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569-645

[9]

Cruz-Uribe D, Neugebauer C J. The structure of the reverse Hölder classes. Trans Amer Math Soc, 1995, 347: 2941-2960

[10]

Diening L. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull Sci Math, 2005, 129: 657-700

[11]

Diening L, Hästö P, Roudenko S. Function spaces of variable smoothness and integrability. J Funct Anal, 2009, 256: 1731-1768

[12]

Duong X T, Li J. Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J Funct Anal, 2013, 264: 1409-1437

[13]

Duong X T, Ouhabaz E M, Yan L X. Endpoint estimates for Riesz transforms of magnetic Schrödinger operators. Ark Mat, 2006, 44: 261-275

[14]

Duong X T, Xiao J, Yan L X. Old and new Morrey spaces with heat kernel bounds. J Fourier Anal Appl, 2007, 13: 87-111

[15]

Duong X T, Yan L X. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J Amer Math Soc, 2005, 18: 943-973

[16]

Duong X T, Yan L X. Commutators of Riesz transforms of magnetic Schrödinger operators. Manuscripta Math, 2008, 127: 219-234

[17]

Fefferman C, Stein E M. Hp<?Pub Caret?> spaces of several variables. Acta Math, 1972, 129: 137-193

[18]

García-Cuerva J. Weighted Hp spaces. Dissertationes Math (Rozprawy Mat), 1979, 162, (63 pp)

[19]

Grafakos L. Modern Fourier Analysis. 2nd ed. Grad Texts in Math, Vol 250. New York: Springer, 2009

[20]

Hofmann S, Lu G Z, Mitrea D, Mitrea M, Yan L X. Hardy Spaces Associated to Nonnegative Self-adjoint Operators Satisfying Davies-Gaffney Estimates. Mem Amer Math Soc, Vol 214, No 1007. Providence: Amer Math Soc, 2011

[21]

Hofmann S, Mayboroda S. Hardy and BMO spaces associated to divergence form elliptic operators. Math Ann, 2009, 344: 37-116

[22]

Hofmann S, Mayboroda S, McIntosh A. Second order elliptic operators with complex bounded measurable coefficients in Lp, Sobolev and Hardy spaces. Ann Sci Éc Norm Supér (4), 2011, 44: 723-800

[23]

Hou S X, Yang D C, Yang S B. Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun Contemp Math, 2013, 15: 1350029, (37 pp)

[24]

Janson S. Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math J, 1980, 47: 959-982

[25]

Jiang R J, Yang D C. Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Commun Contemp Math, 2011, 13: 331-373

[26]

Jiang R J, Yang D C, Yang D Y. Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators. Forum Math, 2012, 24: 471-494

[27]

Johnson R, Neugebauer C J. Homeomorphisms preserving Ap. Rev Mat Iberoam, 1987, 3: 249-273

[28]

Ky L D. Bilinear decompositions and commutators of singular integral operators. Trans Amer Math Soc, 2013, 365: 2931-2958

[29]

Ky L D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory, 2014, 78: 115-150

[30]

Lerner A K. Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces. Math Z, 2005, 251: 509-521

[31]

Liang Y Y, Huang J Z, Yang D C. New real-variable characterizations of Musielak-Orlicz Hardy spaces. J Math Anal Appl, 2012, 395: 413-428

[32]

Musielak J. Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, Vol 1034. Berlin: Springer-Verlag, 1983

[33]

Ouhabaz E M. Analysis of Heat Equations on Domains. Princeton: Princeton Univ Press, 2005

[34]

Rao M, Ren Z. Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 146. New York: Marcel Dekker, Inc, 1991

[35]

Simon B. Maximal and minimal Schrödinger forms. J Operator Theory, 1979, 1: 37-47

[36]

Stein E M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993

[37]

Stein E M, Weiss G. On the theory of harmonic functions of several variables. I. The theory of Hp-spaces. Acta Math, 1960, 103: 25-62

[38]

Strömberg J O. Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ Math J, 1979, 28: 511-544

[39]

Strömberg J O, Torchinsky A. Weighted Hardy Spaces. Lecture Notes in Mathematics, Vol 1381, Berlin: Springer-Verlag, 1989

[40]

Yang D C, Yang D Y. Real-variable characterizations of Hardy spaces associated with Bessel operators. Anal Appl (Singap), 2011, 9: 345-368

[41]

Yang D C, Yang S B. Orlicz-Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of Rn.Indiana Univ Math J, 2012, 61: 81-129

[42]

Yang D C, Yang S B. Musielak-Orlicz-Hardy spaces associated with operators and their applications. J Geom Anal, 2014, 24: 495-570

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (271KB)

982

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/