Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schr?dinger operators

Dachun YANG, Dongyong YANG

PDF(271 KB)
PDF(271 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1203-1232. DOI: 10.1007/s11464-015-0432-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schr?dinger operators

Author information +
History +

Abstract

Let φ be a growth function, and let A:=-(-ia)(-ia)+V be a magnetic Schrödinger operator on L2(n),n2, where α:=(α1,α2,,αn)Lloc2(n,n) and 0VLloc1(n). We establish the equivalent characterizations of the Musielak-Orlicz-Hardy space HA,φ(n), defined by the Lusin area function associated with {e-t2A}t>0, in terms of the Lusin area function associated with {e-tA}t>0, the radial maximal functions and the nontangential maximal functions associated with {e-t2A}t>0 and {e-tA}t>0, respectively. The boundedness of the Riesz transforms LkA-1/2,k{1,2,,n}, from HA,φ(n) to Lφ(n) is also presented, where Lk is the closure of xk-iαk in L2(n). These results are new even when φ(x,t):=ω(x)tp for all xnand t ∈(0,+) with p ∈(0, 1] and ωA(n) (the class of Muckenhoupt weights on n).

Keywords

Magnetic Schrödinger operator / Musielak-Orlicz-Hardy space / Lusin area function / growth function / maximal function / Riesz transform

Cite this article

Download citation ▾
Dachun YANG, Dongyong YANG. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrödinger operators. Front. Math. China, 2015, 10(5): 1203‒1232 https://doi.org/10.1007/s11464-015-0432-8

References

[1]
Auscher P, Duong X T, McIntosh A. Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished Manuscript, 2005
[2]
Bonami A, Grellier S, Ky L D. Paraproducts and products of functions in BMO(Rn) and H1(Rn) through wavelets. J Math Pures Appl (9), 2012, 97: 230-241
[3]
Bonami A, Iwaniec T, Jones P, Zinsmeister M. On the product of functions in BMO and H1. Ann Inst Fourier (Grenoble), 2007, 57: 1405-1439
CrossRef Google scholar
[4]
Bui T A, Cao J, Ky L D, Yang D C, Yang S B. Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Taiwanese J Math, 2013, 17: 1127-1166
CrossRef Google scholar
[5]
Bui T A, Cao J, Ky L D, Yang D C, Yang S B. Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal Geom Metr Spaces, 2013, 1: 69-129
CrossRef Google scholar
[6]
Bui T A, Li J. Orlicz-Hardy spaces associated to operators satisfying bounded H functional calculus and Davies-Gaffney estimates. J Math Anal Appl, 2011, 373: 485-501
CrossRef Google scholar
[7]
Cao J, Chang D C, Yang D C, Yang S B. Weighted local Orlicz-Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems. Trans Amer Math Soc, 2013, 365: 4729-4809
CrossRef Google scholar
[8]
Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569-645
CrossRef Google scholar
[9]
Cruz-Uribe D, Neugebauer C J. The structure of the reverse Hölder classes. Trans Amer Math Soc, 1995, 347: 2941-2960
[10]
Diening L. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull Sci Math, 2005, 129: 657-700
CrossRef Google scholar
[11]
Diening L, Hästö P, Roudenko S. Function spaces of variable smoothness and integrability. J Funct Anal, 2009, 256: 1731-1768
CrossRef Google scholar
[12]
Duong X T, Li J. Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J Funct Anal, 2013, 264: 1409-1437
CrossRef Google scholar
[13]
Duong X T, Ouhabaz E M, Yan L X. Endpoint estimates for Riesz transforms of magnetic Schrödinger operators. Ark Mat, 2006, 44: 261-275
CrossRef Google scholar
[14]
Duong X T, Xiao J, Yan L X. Old and new Morrey spaces with heat kernel bounds. J Fourier Anal Appl, 2007, 13: 87-111
CrossRef Google scholar
[15]
Duong X T, Yan L X. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J Amer Math Soc, 2005, 18: 943-973
CrossRef Google scholar
[16]
Duong X T, Yan L X. Commutators of Riesz transforms of magnetic Schrödinger operators. Manuscripta Math, 2008, 127: 219-234
CrossRef Google scholar
[17]
Fefferman C, Stein E M. Hp<?Pub Caret?> spaces of several variables. Acta Math, 1972, 129: 137-193
CrossRef Google scholar
[18]
García-Cuerva J. Weighted Hp spaces. Dissertationes Math (Rozprawy Mat), 1979, 162, (63 pp)
[19]
Grafakos L. Modern Fourier Analysis. 2nd ed. Grad Texts in Math, Vol 250. New York: Springer, 2009
CrossRef Google scholar
[20]
Hofmann S, Lu G Z, Mitrea D, Mitrea M, Yan L X. Hardy Spaces Associated to Nonnegative Self-adjoint Operators Satisfying Davies-Gaffney Estimates. Mem Amer Math Soc, Vol 214, No 1007. Providence: Amer Math Soc, 2011
[21]
Hofmann S, Mayboroda S. Hardy and BMO spaces associated to divergence form elliptic operators. Math Ann, 2009, 344: 37-116
CrossRef Google scholar
[22]
Hofmann S, Mayboroda S, McIntosh A. Second order elliptic operators with complex bounded measurable coefficients in Lp, Sobolev and Hardy spaces. Ann Sci Éc Norm Supér (4), 2011, 44: 723-800
[23]
Hou S X, Yang D C, Yang S B. Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun Contemp Math, 2013, 15: 1350029, (37 pp)
[24]
Janson S. Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math J, 1980, 47: 959-982
CrossRef Google scholar
[25]
Jiang R J, Yang D C. Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Commun Contemp Math, 2011, 13: 331-373
CrossRef Google scholar
[26]
Jiang R J, Yang D C, Yang D Y. Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators. Forum Math, 2012, 24: 471-494
CrossRef Google scholar
[27]
Johnson R, Neugebauer C J. Homeomorphisms preserving Ap. Rev Mat Iberoam, 1987, 3: 249-273
CrossRef Google scholar
[28]
Ky L D. Bilinear decompositions and commutators of singular integral operators. Trans Amer Math Soc, 2013, 365: 2931-2958
CrossRef Google scholar
[29]
Ky L D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory, 2014, 78: 115-150
CrossRef Google scholar
[30]
Lerner A K. Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces. Math Z, 2005, 251: 509-521
CrossRef Google scholar
[31]
Liang Y Y, Huang J Z, Yang D C. New real-variable characterizations of Musielak-Orlicz Hardy spaces. J Math Anal Appl, 2012, 395: 413-428
CrossRef Google scholar
[32]
Musielak J. Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, Vol 1034. Berlin: Springer-Verlag, 1983
[33]
Ouhabaz E M. Analysis of Heat Equations on Domains. Princeton: Princeton Univ Press, 2005
[34]
Rao M, Ren Z. Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 146. New York: Marcel Dekker, Inc, 1991
[35]
Simon B. Maximal and minimal Schrödinger forms. J Operator Theory, 1979, 1: 37-47
[36]
Stein E M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993
[37]
Stein E M, Weiss G. On the theory of harmonic functions of several variables. I. The theory of Hp-spaces. Acta Math, 1960, 103: 25-62
CrossRef Google scholar
[38]
Strömberg J O. Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ Math J, 1979, 28: 511-544
CrossRef Google scholar
[39]
Strömberg J O, Torchinsky A. Weighted Hardy Spaces. Lecture Notes in Mathematics, Vol 1381, Berlin: Springer-Verlag, 1989
[40]
Yang D C, Yang D Y. Real-variable characterizations of Hardy spaces associated with Bessel operators. Anal Appl (Singap), 2011, 9: 345-368
CrossRef Google scholar
[41]
Yang D C, Yang S B. Orlicz-Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of Rn.Indiana Univ Math J, 2012, 61: 81-129
CrossRef Google scholar
[42]
Yang D C, Yang S B. Musielak-Orlicz-Hardy spaces associated with operators and their applications. J Geom Anal, 2014, 24: 495-570
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(271 KB)

Accesses

Citations

Detail

Sections
Recommended

/