RESEARCH ARTICLE

Sharp lower bound of spectral gap for Schrödinger operator and related results

  • Yue HE
Expand
  • Institute of Mathematics, School of Mathematics Sciences, Nanjing Normal University, Nanjing 210023, China

Received date: 11 Sep 2014

Accepted date: 27 Nov 2014

Published date: 12 Oct 2015

Copyright

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We give an easy proof of Andrews and Clutterbuck’s main results [J. Amer. Math. Soc., 2011, 24(3): 899−916], which gives both a sharp lower bound for the spectral gap of a Schrödinger operator and a sharp modulus of concavity for the logarithm of the corresponding first eigenfunction. We arrive directly at the same estimates by the ‘double coordinate’ approach and asymptotic behavior of parabolic flows. Although using the techniques appeared in the above paper, we partly simplify the method and argument. This maybe help to provide an easy way for estimating spectral gap. Besides, we also get a new lower bound of spectral gap for a class of Schödinger operator.

Cite this article

Yue HE . Sharp lower bound of spectral gap for Schrödinger operator and related results[J]. Frontiers of Mathematics in China, 2015 , 10(6) : 1283 -1312 . DOI: 10.1007/s11464-015-0455-1

1
Andrews B, Clutterbuck J. Proof of the fundamental gap conjecture. J Amer Math Soc, 2011, 24(3): 899−916

DOI

2
Ashbaugh M S, Benguria R. Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials. Proc Amer Math Soc, 1989, 105(2): 419−424

DOI

3
Bañelos R, Kröger P. Gradient estimates for the ground state Schrödinger eigenfunction and applications. Comm Math Phys, 2001, 224(2): 545−550

DOI

4
Bañuelos R, Méndez-Hernández P J. Sharp inequalities for heat kernels of Schrödinger operators and applications to spectral gaps. J Funct Anal, 2000, 176(2): 368−399

DOI

5
Benguria R D, Linde H, Loewe B. Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrödinger operator. Bull Math Sci, 2012, 2(1): 1−56

DOI

6
Berg M van den. On condensation in the free-boson gas and the spectrum of the Laplacian. J Stat Phys, 1983, 31(3): 623−637

DOI

7
Brascamp H, Liep E. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave function, and with an application to diffusion equation. J Funct Anal, 1976, 22: 366−389

DOI

8
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. Probability and Its Applications. New York: Springer-Verlag, 2005

9
Chen M F. General estimate of the first eigenvalue on manifolds. Front Math China, 2011, 6(6): 1025−1043

DOI

10
Chen M F, Wang F Y. Application of coupling method to the first eigenvalue on manifold. Sci China Ser A, 1994, 37(1): 1−14

11
Chen M F, Wang F Y. Estimation of spectral gap for elliptic operators. Trans Amer Math Soc, 1997, 349(3): 1239−1267

DOI

12
Chen Y Z. Second Order Parabolic Equations. Beijing: Peking University Press, 2003 (in Chinese)

13
Clutterbuck J. Parabolic Equations with Continuous Initial Data. Ph D Thesis, Australian National University. http://arxiv.org/abs/math/0504455

14
Courant R, Hilbert D. Methods of Mathematical Physics, I. New York: Interscience, 1953

15
Davis B. On the spectral gap for fixed membranes. Ark Mat, 2001, 39(1): 65−74

DOI

16
Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 2001

17
Gong F Z, Li H Q, Luo D J. The fundamental gap conjecture: a probabilistic approach via the coupling by reflection. http://arxiv.org/abs/1303.2459

18
Gong F Z, Liu Yong, Liu Yuan, Luo D J. Spectral gaps of Schrödinger operators and diffusion operators on abstract Wiener spaces. J Funct Anal, 2014, 266(9): 5639−5675

DOI

19
Henrot A. Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Basel: Birkhäuser Verlag, 2006

20
Henrot A, Pierre M. Variation et optimisation de formes: Une analyse géométrique. Mathématiques & Applications (Berlin), Vol 48. Berlin: Springer, 2005

DOI

21
Horváth M. On the first two eigenvalues of Sturm-Liouville operators. Proc Amer Math Soc, 2003, 131(4): 1215−1224

DOI

22
Hsu E P. Stochastic Analysis on Manifolds. Graduate Studies in Mathematics, 38. Providence: American Mathematical Society, 2002

23
Hu Bei. Blow-up Theories for Semilinear Parabolic Equations. Lecture Notes in Math, Vol 2018. Heidelberg: Springer, 2011

24
Lavine R. The eigenvalue gap for one-dimensional convex potentials. Proc Amer Math Soc, 1994, 121(3): 815−821

DOI

25
Lee Ki-ahm, Vázquez J L. Parabolic approach to nonlinear elliptic eigenvalue problems. Adv Math, 2008, 219(6): 2006−2028

DOI

26
Li P. A lower bound for the first eigenvalue of the Laplacian on a compact Riemannian manifold. Indiana Univ Math J, 1979, 28: 1013−1019

DOI

27
Li P, Yau S T. On the Schrödinger equation and the eigenvalue problem. Comm Math Phys, 1983, 88(3): 309−318

DOI

28
Lieberman G M. Second Order Parabolic Differential Equations. River Edge: World Scientific Publishing Co, Inc, 1996

DOI

29
Ling J. Estimates on the lower bound of the first gap. Comm Anal Geom, 2008, 16(3): 539−563

DOI

30
Lu Z Q. Eigenvalue Gaps (I). UCI PDE Learning Seminar, 2011-May-26

31
Ni L. Estimates on the modulus of expansion for vector fields solving nonlinear equations. J Math Pure Appl, 2013, 99(1): 1−16

DOI

32
Qian Z M, Zhang H C, Zhu X P. Sharp spectral gap and Li-Yau’s estimate on Alexandrov spaces. Math Z, 2013, 273(3−4): 1175−1195

DOI

33
Schoen R, Yau S T. Lectures on Differential Geometry. Conference Proceedings and ecture Notes in Geometry and Topology, Vol I. Boston: International Press, 1994

34
Shi Y M, Zhang H C. Lower bounds for the first eigenvalue on compact manifolds. Chinese Ann Math Ser A, 2007, 28(6): 863−866

35
Singer I M, Wong B, Yau S T, Yau S S T. An estimate of the gap of the first two eigenvalues in the Schrödinger operator. Ann Sc Norm Super Pisa Cl Sci (4), 1985, 12(2): 319−333

36
Wolfson J. Eigenvalue gap theorems for a class of non symmetric elliptic operators on convex domains. http://arxiv.org/abs/1212.1669

37
Yau S T. Nonlinear Analysis in Geometry. Monographies de L’Enseignement Math, Vol 33. L’Enseignement Mathématique, Geneva, 1986. Série des Conférences de l’Union Mathématique Internationale, 8

38
Yau S T. An estimate of the gap of the first two eigenvalues in the Schrödinger operator. Lectures on Partial Differential Equations. New Stud Adv Math, Vol 2. Somerville: Int Press, 2003, 223−235

39
Yau S T. Gap of the first two eigenvalues of the Schrödinger operator with nonconvex potential. Mat Contemp, 2008, 35: 267−285

40
Yu Q H, Zhong J Q. Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator. Trans Amer Math Soc, 1986, 294(1): 341−349

DOI

Outlines

/