Frontiers of Mathematics in China >
Sharp lower bound of spectral gap for Schrödinger operator and related results
Received date: 11 Sep 2014
Accepted date: 27 Nov 2014
Published date: 12 Oct 2015
Copyright
We give an easy proof of Andrews and Clutterbuck’s main results [J. Amer. Math. Soc., 2011, 24(3): 899−916], which gives both a sharp lower bound for the spectral gap of a Schrödinger operator and a sharp modulus of concavity for the logarithm of the corresponding first eigenfunction. We arrive directly at the same estimates by the ‘double coordinate’ approach and asymptotic behavior of parabolic flows. Although using the techniques appeared in the above paper, we partly simplify the method and argument. This maybe help to provide an easy way for estimating spectral gap. Besides, we also get a new lower bound of spectral gap for a class of Schödinger operator.
Yue HE . Sharp lower bound of spectral gap for Schrödinger operator and related results[J]. Frontiers of Mathematics in China, 2015 , 10(6) : 1283 -1312 . DOI: 10.1007/s11464-015-0455-1
1 |
Andrews B, Clutterbuck J. Proof of the fundamental gap conjecture. J Amer Math Soc, 2011, 24(3): 899−916
|
2 |
Ashbaugh M S, Benguria R. Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials. Proc Amer Math Soc, 1989, 105(2): 419−424
|
3 |
Bañelos R, Kröger P. Gradient estimates for the ground state Schrödinger eigenfunction and applications. Comm Math Phys, 2001, 224(2): 545−550
|
4 |
Bañuelos R, Méndez-Hernández P J. Sharp inequalities for heat kernels of Schrödinger operators and applications to spectral gaps. J Funct Anal, 2000, 176(2): 368−399
|
5 |
Benguria R D, Linde H, Loewe B. Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrödinger operator. Bull Math Sci, 2012, 2(1): 1−56
|
6 |
Berg M van den. On condensation in the free-boson gas and the spectrum of the Laplacian. J Stat Phys, 1983, 31(3): 623−637
|
7 |
Brascamp H, Liep E. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave function, and with an application to diffusion equation. J Funct Anal, 1976, 22: 366−389
|
8 |
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. Probability and Its Applications. New York: Springer-Verlag, 2005
|
9 |
Chen M F. General estimate of the first eigenvalue on manifolds. Front Math China, 2011, 6(6): 1025−1043
|
10 |
Chen M F, Wang F Y. Application of coupling method to the first eigenvalue on manifold. Sci China Ser A, 1994, 37(1): 1−14
|
11 |
Chen M F, Wang F Y. Estimation of spectral gap for elliptic operators. Trans Amer Math Soc, 1997, 349(3): 1239−1267
|
12 |
Chen Y Z. Second Order Parabolic Equations. Beijing: Peking University Press, 2003 (in Chinese)
|
13 |
Clutterbuck J. Parabolic Equations with Continuous Initial Data. Ph D Thesis, Australian National University.
|
14 |
Courant R, Hilbert D. Methods of Mathematical Physics, I. New York: Interscience, 1953
|
15 |
Davis B. On the spectral gap for fixed membranes. Ark Mat, 2001, 39(1): 65−74
|
16 |
Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 2001
|
17 |
Gong F Z, Li H Q, Luo D J. The fundamental gap conjecture: a probabilistic approach via the coupling by reflection.
|
18 |
Gong F Z, Liu Yong, Liu Yuan, Luo D J. Spectral gaps of Schrödinger operators and diffusion operators on abstract Wiener spaces. J Funct Anal, 2014, 266(9): 5639−5675
|
19 |
Henrot A. Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Basel: Birkhäuser Verlag, 2006
|
20 |
Henrot A, Pierre M. Variation et optimisation de formes: Une analyse géométrique. Mathématiques & Applications (Berlin), Vol 48. Berlin: Springer, 2005
|
21 |
Horváth M. On the first two eigenvalues of Sturm-Liouville operators. Proc Amer Math Soc, 2003, 131(4): 1215−1224
|
22 |
Hsu E P. Stochastic Analysis on Manifolds. Graduate Studies in Mathematics, 38. Providence: American Mathematical Society, 2002
|
23 |
Hu Bei. Blow-up Theories for Semilinear Parabolic Equations. Lecture Notes in Math, Vol 2018. Heidelberg: Springer, 2011
|
24 |
Lavine R. The eigenvalue gap for one-dimensional convex potentials. Proc Amer Math Soc, 1994, 121(3): 815−821
|
25 |
Lee Ki-ahm, Vázquez J L. Parabolic approach to nonlinear elliptic eigenvalue problems. Adv Math, 2008, 219(6): 2006−2028
|
26 |
Li P. A lower bound for the first eigenvalue of the Laplacian on a compact Riemannian manifold. Indiana Univ Math J, 1979, 28: 1013−1019
|
27 |
Li P, Yau S T. On the Schrödinger equation and the eigenvalue problem. Comm Math Phys, 1983, 88(3): 309−318
|
28 |
Lieberman G M. Second Order Parabolic Differential Equations. River Edge: World Scientific Publishing Co, Inc, 1996
|
29 |
Ling J. Estimates on the lower bound of the first gap. Comm Anal Geom, 2008, 16(3): 539−563
|
30 |
Lu Z Q. Eigenvalue Gaps (I). UCI PDE Learning Seminar, 2011-May-26
|
31 |
Ni L. Estimates on the modulus of expansion for vector fields solving nonlinear equations. J Math Pure Appl, 2013, 99(1): 1−16
|
32 |
Qian Z M, Zhang H C, Zhu X P. Sharp spectral gap and Li-Yau’s estimate on Alexandrov spaces. Math Z, 2013, 273(3−4): 1175−1195
|
33 |
Schoen R, Yau S T. Lectures on Differential Geometry. Conference Proceedings and ecture Notes in Geometry and Topology, Vol I. Boston: International Press, 1994
|
34 |
Shi Y M, Zhang H C. Lower bounds for the first eigenvalue on compact manifolds. Chinese Ann Math Ser A, 2007, 28(6): 863−866
|
35 |
Singer I M, Wong B, Yau S T, Yau S S T. An estimate of the gap of the first two eigenvalues in the Schrödinger operator. Ann Sc Norm Super Pisa Cl Sci (4), 1985, 12(2): 319−333
|
36 |
Wolfson J. Eigenvalue gap theorems for a class of non symmetric elliptic operators on convex domains.
|
37 |
Yau S T. Nonlinear Analysis in Geometry. Monographies de L’Enseignement Math, Vol 33. L’Enseignement Mathématique, Geneva, 1986. Série des Conférences de l’Union Mathématique Internationale, 8
|
38 |
Yau S T. An estimate of the gap of the first two eigenvalues in the Schrödinger operator. Lectures on Partial Differential Equations. New Stud Adv Math, Vol 2. Somerville: Int Press, 2003, 223−235
|
39 |
Yau S T. Gap of the first two eigenvalues of the Schrödinger operator with nonconvex potential. Mat Contemp, 2008, 35: 267−285
|
40 |
Yu Q H, Zhong J Q. Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator. Trans Amer Math Soc, 1986, 294(1): 341−349
|
/
〈 |
|
〉 |