Sharp lower bound of spectral gap for Schrödinger operator and related results

Yue HE

PDF(231 KB)
PDF(231 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1283-1312. DOI: 10.1007/s11464-015-0455-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Sharp lower bound of spectral gap for Schrödinger operator and related results

Author information +
History +

Abstract

We give an easy proof of Andrews and Clutterbuck’s main results [J. Amer. Math. Soc., 2011, 24(3): 899−916], which gives both a sharp lower bound for the spectral gap of a Schrödinger operator and a sharp modulus of concavity for the logarithm of the corresponding first eigenfunction. We arrive directly at the same estimates by the ‘double coordinate’ approach and asymptotic behavior of parabolic flows. Although using the techniques appeared in the above paper, we partly simplify the method and argument. This maybe help to provide an easy way for estimating spectral gap. Besides, we also get a new lower bound of spectral gap for a class of Schödinger operator.

Keywords

Schrödinger operator / Laplace operator / spectral gap / ground state / strictly convex domain / diameter of domain

Cite this article

Download citation ▾
Yue HE. Sharp lower bound of spectral gap for Schrödinger operator and related results. Front. Math. China, 2015, 10(6): 1283‒1312 https://doi.org/10.1007/s11464-015-0455-1

References

[1]
Andrews B, Clutterbuck J. Proof of the fundamental gap conjecture. J Amer Math Soc, 2011, 24(3): 899−916
CrossRef Google scholar
[2]
Ashbaugh M S, Benguria R. Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials. Proc Amer Math Soc, 1989, 105(2): 419−424
CrossRef Google scholar
[3]
Bañelos R, Kröger P. Gradient estimates for the ground state Schrödinger eigenfunction and applications. Comm Math Phys, 2001, 224(2): 545−550
CrossRef Google scholar
[4]
Bañuelos R, Méndez-Hernández P J. Sharp inequalities for heat kernels of Schrödinger operators and applications to spectral gaps. J Funct Anal, 2000, 176(2): 368−399
CrossRef Google scholar
[5]
Benguria R D, Linde H, Loewe B. Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrödinger operator. Bull Math Sci, 2012, 2(1): 1−56
CrossRef Google scholar
[6]
Berg M van den. On condensation in the free-boson gas and the spectrum of the Laplacian. J Stat Phys, 1983, 31(3): 623−637
CrossRef Google scholar
[7]
Brascamp H, Liep E. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave function, and with an application to diffusion equation. J Funct Anal, 1976, 22: 366−389
CrossRef Google scholar
[8]
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. Probability and Its Applications. New York: Springer-Verlag, 2005
[9]
Chen M F. General estimate of the first eigenvalue on manifolds. Front Math China, 2011, 6(6): 1025−1043
CrossRef Google scholar
[10]
Chen M F, Wang F Y. Application of coupling method to the first eigenvalue on manifold. Sci China Ser A, 1994, 37(1): 1−14
[11]
Chen M F, Wang F Y. Estimation of spectral gap for elliptic operators. Trans Amer Math Soc, 1997, 349(3): 1239−1267
CrossRef Google scholar
[12]
Chen Y Z. Second Order Parabolic Equations. Beijing: Peking University Press, 2003 (in Chinese)
[13]
Clutterbuck J. Parabolic Equations with Continuous Initial Data. Ph D Thesis, Australian National University. http://arxiv.org/abs/math/0504455
[14]
Courant R, Hilbert D. Methods of Mathematical Physics, I. New York: Interscience, 1953
[15]
Davis B. On the spectral gap for fixed membranes. Ark Mat, 2001, 39(1): 65−74
CrossRef Google scholar
[16]
Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 2001
[17]
Gong F Z, Li H Q, Luo D J. The fundamental gap conjecture: a probabilistic approach via the coupling by reflection. http://arxiv.org/abs/1303.2459
[18]
Gong F Z, Liu Yong, Liu Yuan, Luo D J. Spectral gaps of Schrödinger operators and diffusion operators on abstract Wiener spaces. J Funct Anal, 2014, 266(9): 5639−5675
CrossRef Google scholar
[19]
Henrot A. Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Basel: Birkhäuser Verlag, 2006
[20]
Henrot A, Pierre M. Variation et optimisation de formes: Une analyse géométrique. Mathématiques & Applications (Berlin), Vol 48. Berlin: Springer, 2005
CrossRef Google scholar
[21]
Horváth M. On the first two eigenvalues of Sturm-Liouville operators. Proc Amer Math Soc, 2003, 131(4): 1215−1224
CrossRef Google scholar
[22]
Hsu E P. Stochastic Analysis on Manifolds. Graduate Studies in Mathematics, 38. Providence: American Mathematical Society, 2002
[23]
Hu Bei. Blow-up Theories for Semilinear Parabolic Equations. Lecture Notes in Math, Vol 2018. Heidelberg: Springer, 2011
[24]
Lavine R. The eigenvalue gap for one-dimensional convex potentials. Proc Amer Math Soc, 1994, 121(3): 815−821
CrossRef Google scholar
[25]
Lee Ki-ahm, Vázquez J L. Parabolic approach to nonlinear elliptic eigenvalue problems. Adv Math, 2008, 219(6): 2006−2028
CrossRef Google scholar
[26]
Li P. A lower bound for the first eigenvalue of the Laplacian on a compact Riemannian manifold. Indiana Univ Math J, 1979, 28: 1013−1019
CrossRef Google scholar
[27]
Li P, Yau S T. On the Schrödinger equation and the eigenvalue problem. Comm Math Phys, 1983, 88(3): 309−318
CrossRef Google scholar
[28]
Lieberman G M. Second Order Parabolic Differential Equations. River Edge: World Scientific Publishing Co, Inc, 1996
CrossRef Google scholar
[29]
Ling J. Estimates on the lower bound of the first gap. Comm Anal Geom, 2008, 16(3): 539−563
CrossRef Google scholar
[30]
Lu Z Q. Eigenvalue Gaps (I). UCI PDE Learning Seminar, 2011-May-26
[31]
Ni L. Estimates on the modulus of expansion for vector fields solving nonlinear equations. J Math Pure Appl, 2013, 99(1): 1−16
CrossRef Google scholar
[32]
Qian Z M, Zhang H C, Zhu X P. Sharp spectral gap and Li-Yau’s estimate on Alexandrov spaces. Math Z, 2013, 273(3−4): 1175−1195
CrossRef Google scholar
[33]
Schoen R, Yau S T. Lectures on Differential Geometry. Conference Proceedings and ecture Notes in Geometry and Topology, Vol I. Boston: International Press, 1994
[34]
Shi Y M, Zhang H C. Lower bounds for the first eigenvalue on compact manifolds. Chinese Ann Math Ser A, 2007, 28(6): 863−866
[35]
Singer I M, Wong B, Yau S T, Yau S S T. An estimate of the gap of the first two eigenvalues in the Schrödinger operator. Ann Sc Norm Super Pisa Cl Sci (4), 1985, 12(2): 319−333
[36]
Wolfson J. Eigenvalue gap theorems for a class of non symmetric elliptic operators on convex domains. http://arxiv.org/abs/1212.1669
[37]
Yau S T. Nonlinear Analysis in Geometry. Monographies de L’Enseignement Math, Vol 33. L’Enseignement Mathématique, Geneva, 1986. Série des Conférences de l’Union Mathématique Internationale, 8
[38]
Yau S T. An estimate of the gap of the first two eigenvalues in the Schrödinger operator. Lectures on Partial Differential Equations. New Stud Adv Math, Vol 2. Somerville: Int Press, 2003, 223−235
[39]
Yau S T. Gap of the first two eigenvalues of the Schrödinger operator with nonconvex potential. Mat Contemp, 2008, 35: 267−285
[40]
Yu Q H, Zhong J Q. Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator. Trans Amer Math Soc, 1986, 294(1): 341−349
CrossRef Google scholar

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(231 KB)

Accesses

Citations

Detail

Sections
Recommended

/