RESEARCH ARTICLE

S-semiembedded subgroups of finite groups

  • Yuemei MAO 1,2 ,
  • Abid MAHBOOB 1 ,
  • Wenbin GUO , 1
Expand
  • 1. School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China
  • 2. School of Mathematics and Computer, University of Datong, Datong 037009, China

Received date: 02 Mar 2014

Accepted date: 11 Mar 2015

Published date: 12 Oct 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A subgroup H of a finite group G is said to be s-semipermutable in G if it is permutable with every Sylow p-subgroup of G with (p, |H|) = 1. We say that a subgroup H of a finite group G is S-semiembedded in G if there exists an s-permutable subgroup T of G such that TH is s-permutable in G and THHs¯G, where Hs¯G is an s-semipermutable subgroup of G contained in H. In this paper, we investigate the influence of S-semiembedded subgroups on the structure of finite groups.

Cite this article

Yuemei MAO , Abid MAHBOOB , Wenbin GUO . S-semiembedded subgroups of finite groups[J]. Frontiers of Mathematics in China, 2015 , 10(6) : 1401 -1413 . DOI: 10.1007/s11464-015-0465-z

1
Chen Z. On a theorem of Srinivasan. J Southwest Normal Univ (Nat Sci), 1987, 12(1): 1−4

2
Deskins W E. On quasinormal subgroups of a finite group. Math Z, 1963, 82: 125−132

DOI

3
Doerk K, Hawkes T. Finite Solvable Groups. Berlin: Walter de Gruyter, 1992

DOI

4
Gorenstein D. Finite Groups. New York: Chelsea Publishing Co, 1968

5
Guo W. The Theory of Classes of Groups. Beijing-New York: Science Press-Kluwer Academic Publishers, 2000

6
Guo W, Lu Y, Niu W. S-embedded subgroups of finite groups. Algebra Logic, 2010, 49(4): 293−304

DOI

7
Guo X, Shum K P. On c-normal maximal and minimal subgroups of Sylow p-subgroup of finite groups. Arch Math, 2003, 80(6): 561−569

DOI

8
Guo W, Shum K P, Skiba A N. On solubility and supersolubility of some classes of finite groups. Sci China Ser A, 2009, 52(2): 272−286

DOI

9
Huppert B. Endliche Gruppen I. New York: Springer, 1967

DOI

10
Kegel O H. Sylow-Gruppen and Subnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205−211

DOI

11
Li Y, Qiao S, Su N, Wang Y. On weakly s-semipermutable subgroups of finite group. J Algebra, 2012, 371: 250−261

DOI

12
Robinson D J S. A Course in Theory of Group. New York: Springer-Verlag, 1982

DOI

13
Schmid P. Subgroups permutable with all Sylow subgroups. J Algebra, 1998, 207: 285−293

DOI

14
Skiba A N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315(1): 192−209

DOI

15
Srinivasan S. Two sufficient conditions for supersolubility of finite groups. Israel J Math, 1980, 35(3): 210−214

DOI

16
Wang L, Wang Y. On s-semipermutable maximal subgroups and minimal subgroups of Sylow p-subgroups of finite groups. Comm Algebra, 2006, 34: 143−149

DOI

17
Wang Y. C-normality of groups and its properties. J Algebra, 1996, 180: 954−961

DOI

18
Wielandt H. Subnormal Subgroups and Permutation Groups. Lectures given at the Ohio State University, Columbia, Ohio, 1971

19
Zhang Q, Wang L. The influence of s-semipermutable properties of subgroups on the structure of finite groups. Acta Math Sinica (Chin Ser), 2005, 48(1): 81−88 (in Chinese)

Outlines

/