Frontiers of Mathematics in China >
S-semiembedded subgroups of finite groups
Received date: 02 Mar 2014
Accepted date: 11 Mar 2015
Published date: 12 Oct 2015
Copyright
A subgroup H of a finite group G is said to be s-semipermutable in G if it is permutable with every Sylow p-subgroup of G with (p, |H|) = 1. We say that a subgroup H of a finite group G is S-semiembedded in G if there exists an s-permutable subgroup T of G such that TH is s-permutable in G and , where is an s-semipermutable subgroup of G contained in H. In this paper, we investigate the influence of S-semiembedded subgroups on the structure of finite groups.
Yuemei MAO , Abid MAHBOOB , Wenbin GUO . S-semiembedded subgroups of finite groups[J]. Frontiers of Mathematics in China, 2015 , 10(6) : 1401 -1413 . DOI: 10.1007/s11464-015-0465-z
1 |
Chen Z. On a theorem of Srinivasan. J Southwest Normal Univ (Nat Sci), 1987, 12(1): 1−4
|
2 |
Deskins W E. On quasinormal subgroups of a finite group. Math Z, 1963, 82: 125−132
|
3 |
Doerk K, Hawkes T. Finite Solvable Groups. Berlin: Walter de Gruyter, 1992
|
4 |
Gorenstein D. Finite Groups. New York: Chelsea Publishing Co, 1968
|
5 |
Guo W. The Theory of Classes of Groups. Beijing-New York: Science Press-Kluwer Academic Publishers, 2000
|
6 |
Guo W, Lu Y, Niu W. S-embedded subgroups of finite groups. Algebra Logic, 2010, 49(4): 293−304
|
7 |
Guo X, Shum K P. On c-normal maximal and minimal subgroups of Sylow p-subgroup of finite groups. Arch Math, 2003, 80(6): 561−569
|
8 |
Guo W, Shum K P, Skiba A N. On solubility and supersolubility of some classes of finite groups. Sci China Ser A, 2009, 52(2): 272−286
|
9 |
Huppert B. Endliche Gruppen I. New York: Springer, 1967
|
10 |
Kegel O H. Sylow-Gruppen and Subnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205−211
|
11 |
Li Y, Qiao S, Su N, Wang Y. On weakly s-semipermutable subgroups of finite group. J Algebra, 2012, 371: 250−261
|
12 |
Robinson D J S. A Course in Theory of Group. New York: Springer-Verlag, 1982
|
13 |
Schmid P. Subgroups permutable with all Sylow subgroups. J Algebra, 1998, 207: 285−293
|
14 |
Skiba A N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315(1): 192−209
|
15 |
Srinivasan S. Two sufficient conditions for supersolubility of finite groups. Israel J Math, 1980, 35(3): 210−214
|
16 |
Wang L, Wang Y. On s-semipermutable maximal subgroups and minimal subgroups of Sylow p-subgroups of finite groups. Comm Algebra, 2006, 34: 143−149
|
17 |
Wang Y. C-normality of groups and its properties. J Algebra, 1996, 180: 954−961
|
18 |
Wielandt H. Subnormal Subgroups and Permutation Groups. Lectures given at the Ohio State University, Columbia, Ohio, 1971
|
19 |
Zhang Q, Wang L. The influence of s-semipermutable properties of subgroups on the structure of finite groups. Acta Math Sinica (Chin Ser), 2005, 48(1): 81−88 (in Chinese)
|
/
〈 | 〉 |