S-semiembedded subgroups of finite groups

Yuemei MAO , Abid MAHBOOB , Wenbin GUO

Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1401 -1413.

PDF (127KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1401 -1413. DOI: 10.1007/s11464-015-0465-z
RESEARCH ARTICLE
RESEARCH ARTICLE

S-semiembedded subgroups of finite groups

Author information +
History +
PDF (127KB)

Abstract

A subgroup H of a finite group G is said to be s-semipermutable in G if it is permutable with every Sylow p-subgroup of G with (p, |H|) = 1. We say that a subgroup H of a finite group G is S-semiembedded in G if there exists an s-permutable subgroup T of G such that TH is s-permutable in G and THHs¯G, where Hs¯G is an s-semipermutable subgroup of G contained in H. In this paper, we investigate the influence of S-semiembedded subgroups on the structure of finite groups.

Keywords

s-Permutable subgroup / s-semipermutable subgroup / supersoluble group / S-semiembedded subgroup / p-nilpotent group

Cite this article

Download citation ▾
Yuemei MAO, Abid MAHBOOB, Wenbin GUO. S-semiembedded subgroups of finite groups. Front. Math. China, 2015, 10(6): 1401-1413 DOI:10.1007/s11464-015-0465-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Z. On a theorem of Srinivasan. J Southwest Normal Univ (Nat Sci), 1987, 12(1): 1−4

[2]

Deskins W E. On quasinormal subgroups of a finite group. Math Z, 1963, 82: 125−132

[3]

Doerk K, Hawkes T. Finite Solvable Groups. Berlin: Walter de Gruyter, 1992

[4]

Gorenstein D. Finite Groups. New York: Chelsea Publishing Co, 1968

[5]

Guo W. The Theory of Classes of Groups. Beijing-New York: Science Press-Kluwer Academic Publishers, 2000

[6]

Guo W, Lu Y, Niu W. S-embedded subgroups of finite groups. Algebra Logic, 2010, 49(4): 293−304

[7]

Guo X, Shum K P. On c-normal maximal and minimal subgroups of Sylow p-subgroup of finite groups. Arch Math, 2003, 80(6): 561−569

[8]

Guo W, Shum K P, Skiba A N. On solubility and supersolubility of some classes of finite groups. Sci China Ser A, 2009, 52(2): 272−286

[9]

Huppert B. Endliche Gruppen I. New York: Springer, 1967

[10]

Kegel O H. Sylow-Gruppen and Subnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205−211

[11]

Li Y, Qiao S, Su N, Wang Y. On weakly s-semipermutable subgroups of finite group. J Algebra, 2012, 371: 250−261

[12]

Robinson D J S. A Course in Theory of Group. New York: Springer-Verlag, 1982

[13]

Schmid P. Subgroups permutable with all Sylow subgroups. J Algebra, 1998, 207: 285−293

[14]

Skiba A N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315(1): 192−209

[15]

Srinivasan S. Two sufficient conditions for supersolubility of finite groups. Israel J Math, 1980, 35(3): 210−214

[16]

Wang L, Wang Y. On s-semipermutable maximal subgroups and minimal subgroups of Sylow p-subgroups of finite groups. Comm Algebra, 2006, 34: 143−149

[17]

Wang Y. C-normality of groups and its properties. J Algebra, 1996, 180: 954−961

[18]

Wielandt H. Subnormal Subgroups and Permutation Groups. Lectures given at the Ohio State University, Columbia, Ohio, 1971

[19]

Zhang Q, Wang L. The influence of s-semipermutable properties of subgroups on the structure of finite groups. Acta Math Sinica (Chin Ser), 2005, 48(1): 81−88 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (127KB)

803

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/