S-semiembedded subgroups of finite groups
Yuemei MAO, Abid MAHBOOB, Wenbin GUO
S-semiembedded subgroups of finite groups
A subgroup H of a finite group G is said to be s-semipermutable in G if it is permutable with every Sylow p-subgroup of G with (p, |H|) = 1. We say that a subgroup H of a finite group G is S-semiembedded in G if there exists an s-permutable subgroup T of G such that TH is s-permutable in G and , where is an s-semipermutable subgroup of G contained in H. In this paper, we investigate the influence of S-semiembedded subgroups on the structure of finite groups.
s-Permutable subgroup / s-semipermutable subgroup / supersoluble group / S-semiembedded subgroup / p-nilpotent group
[1] |
Chen Z. On a theorem of Srinivasan. J Southwest Normal Univ (Nat Sci), 1987, 12(1): 1−4
|
[2] |
Deskins W E. On quasinormal subgroups of a finite group. Math Z, 1963, 82: 125−132
CrossRef
Google scholar
|
[3] |
Doerk K, Hawkes T. Finite Solvable Groups. Berlin: Walter de Gruyter, 1992
CrossRef
Google scholar
|
[4] |
Gorenstein D. Finite Groups. New York: Chelsea Publishing Co, 1968
|
[5] |
Guo W. The Theory of Classes of Groups. Beijing-New York: Science Press-Kluwer Academic Publishers, 2000
|
[6] |
Guo W, Lu Y, Niu W. S-embedded subgroups of finite groups. Algebra Logic, 2010, 49(4): 293−304
CrossRef
Google scholar
|
[7] |
Guo X, Shum K P. On c-normal maximal and minimal subgroups of Sylow p-subgroup of finite groups. Arch Math, 2003, 80(6): 561−569
CrossRef
Google scholar
|
[8] |
Guo W, Shum K P, Skiba A N. On solubility and supersolubility of some classes of finite groups. Sci China Ser A, 2009, 52(2): 272−286
CrossRef
Google scholar
|
[9] |
Huppert B. Endliche Gruppen I. New York: Springer, 1967
CrossRef
Google scholar
|
[10] |
Kegel O H. Sylow-Gruppen and Subnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205−211
CrossRef
Google scholar
|
[11] |
Li Y, Qiao S, Su N, Wang Y. On weakly s-semipermutable subgroups of finite group. J Algebra, 2012, 371: 250−261
CrossRef
Google scholar
|
[12] |
Robinson D J S. A Course in Theory of Group. New York: Springer-Verlag, 1982
CrossRef
Google scholar
|
[13] |
Schmid P. Subgroups permutable with all Sylow subgroups. J Algebra, 1998, 207: 285−293
CrossRef
Google scholar
|
[14] |
Skiba A N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315(1): 192−209
CrossRef
Google scholar
|
[15] |
Srinivasan S. Two sufficient conditions for supersolubility of finite groups. Israel J Math, 1980, 35(3): 210−214
CrossRef
Google scholar
|
[16] |
Wang L, Wang Y. On s-semipermutable maximal subgroups and minimal subgroups of Sylow p-subgroups of finite groups. Comm Algebra, 2006, 34: 143−149
CrossRef
Google scholar
|
[17] |
Wang Y. C-normality of groups and its properties. J Algebra, 1996, 180: 954−961
CrossRef
Google scholar
|
[18] |
Wielandt H. Subnormal Subgroups and Permutation Groups. Lectures given at the Ohio State University, Columbia, Ohio, 1971
|
[19] |
Zhang Q, Wang L. The influence of s-semipermutable properties of subgroups on the structure of finite groups. Acta Math Sinica (Chin Ser), 2005, 48(1): 81−88 (in Chinese)
|
/
〈 | 〉 |