S-semiembedded subgroups of finite groups

Yuemei MAO, Abid MAHBOOB, Wenbin GUO

PDF(127 KB)
PDF(127 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1401-1413. DOI: 10.1007/s11464-015-0465-z
RESEARCH ARTICLE
RESEARCH ARTICLE

S-semiembedded subgroups of finite groups

Author information +
History +

Abstract

A subgroup H of a finite group G is said to be s-semipermutable in G if it is permutable with every Sylow p-subgroup of G with (p, |H|) = 1. We say that a subgroup H of a finite group G is S-semiembedded in G if there exists an s-permutable subgroup T of G such that TH is s-permutable in G and THHs¯G, where Hs¯G is an s-semipermutable subgroup of G contained in H. In this paper, we investigate the influence of S-semiembedded subgroups on the structure of finite groups.

Keywords

s-Permutable subgroup / s-semipermutable subgroup / supersoluble group / S-semiembedded subgroup / p-nilpotent group

Cite this article

Download citation ▾
Yuemei MAO, Abid MAHBOOB, Wenbin GUO. S-semiembedded subgroups of finite groups. Front. Math. China, 2015, 10(6): 1401‒1413 https://doi.org/10.1007/s11464-015-0465-z

References

[1]
Chen Z. On a theorem of Srinivasan. J Southwest Normal Univ (Nat Sci), 1987, 12(1): 1−4
[2]
Deskins W E. On quasinormal subgroups of a finite group. Math Z, 1963, 82: 125−132
CrossRef Google scholar
[3]
Doerk K, Hawkes T. Finite Solvable Groups. Berlin: Walter de Gruyter, 1992
CrossRef Google scholar
[4]
Gorenstein D. Finite Groups. New York: Chelsea Publishing Co, 1968
[5]
Guo W. The Theory of Classes of Groups. Beijing-New York: Science Press-Kluwer Academic Publishers, 2000
[6]
Guo W, Lu Y, Niu W. S-embedded subgroups of finite groups. Algebra Logic, 2010, 49(4): 293−304
CrossRef Google scholar
[7]
Guo X, Shum K P. On c-normal maximal and minimal subgroups of Sylow p-subgroup of finite groups. Arch Math, 2003, 80(6): 561−569
CrossRef Google scholar
[8]
Guo W, Shum K P, Skiba A N. On solubility and supersolubility of some classes of finite groups. Sci China Ser A, 2009, 52(2): 272−286
CrossRef Google scholar
[9]
Huppert B. Endliche Gruppen I. New York: Springer, 1967
CrossRef Google scholar
[10]
Kegel O H. Sylow-Gruppen and Subnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205−211
CrossRef Google scholar
[11]
Li Y, Qiao S, Su N, Wang Y. On weakly s-semipermutable subgroups of finite group. J Algebra, 2012, 371: 250−261
CrossRef Google scholar
[12]
Robinson D J S. A Course in Theory of Group. New York: Springer-Verlag, 1982
CrossRef Google scholar
[13]
Schmid P. Subgroups permutable with all Sylow subgroups. J Algebra, 1998, 207: 285−293
CrossRef Google scholar
[14]
Skiba A N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315(1): 192−209
CrossRef Google scholar
[15]
Srinivasan S. Two sufficient conditions for supersolubility of finite groups. Israel J Math, 1980, 35(3): 210−214
CrossRef Google scholar
[16]
Wang L, Wang Y. On s-semipermutable maximal subgroups and minimal subgroups of Sylow p-subgroups of finite groups. Comm Algebra, 2006, 34: 143−149
CrossRef Google scholar
[17]
Wang Y. C-normality of groups and its properties. J Algebra, 1996, 180: 954−961
CrossRef Google scholar
[18]
Wielandt H. Subnormal Subgroups and Permutation Groups. Lectures given at the Ohio State University, Columbia, Ohio, 1971
[19]
Zhang Q, Wang L. The influence of s-semipermutable properties of subgroups on the structure of finite groups. Acta Math Sinica (Chin Ser), 2005, 48(1): 81−88 (in Chinese)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(127 KB)

Accesses

Citations

Detail

Sections
Recommended

/