RESEARCH ARTICLE

Jordan tori for a torsion free abelian group

  • Saeid AZAM , 1,2 ,
  • Yoji YOSHII 3 ,
  • Malihe YOUSOFZADEH 1,2
Expand
  • 1. Department of Mathematics, University of Isfahan, P. O. Box 81745-163, Isfahan, Iran
  • 2. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
  • 3. Department of Mathematics Education, Iwate University, Ueda 3-18-33, Morioka, Iwate 020-8550, Japan

Received date: 23 Oct 2013

Accepted date: 19 Mar 2014

Published date: 01 Apr 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We classify Jordan G-tori, where G is any torsion-free abelian group. Using the Zelmanov prime structure theorem, such a class divides into three types, the Hermitian type, the Clifford type, and the Albert type. We concretely describe Jordan G-tori of each type.

Cite this article

Saeid AZAM , Yoji YOSHII , Malihe YOUSOFZADEH . Jordan tori for a torsion free abelian group[J]. Frontiers of Mathematics in China, 2015 , 10(3) : 477 -509 . DOI: 10.1007/s11464-014-0414-2

1
Allison B, Azam S, Berman S, Gao Y, Pianzola A. Extended Affine Lie Algebras and Their Root Systems. Mem Amer Math Soc, Vol 126, No 603. Providence: Amer Math Soc, 1997

2
Azam S, Yamane H, Yousofzadeh M. Reflectable bases for affine reflection systems. J Algebra, 2012, 371: 63-93

DOI

3
Jacobson N. Structure Theory of Jordan Algebras. The University of Arkansas Lecture Notes in Mathematics, Vol 5. Fayetteville, AR, 1981

4
Jacobson N. Structure and Representations of Jordan Algebras. Amer Math Soc Colloq Publ, Vol 39. Providence: Amer Math Soc, 1968

5
Lam T Y. A First Course in Noncommutative Rings. Graduate Texts in Mathematics, Vol 131. Berlin: Springer-Verlag, 1991

DOI

6
Loos O. Spiegelungsräume und homogene symmetrische Räume. Math Z, 1967, 99: 141-170

DOI

7
McCrimmon K. A Taste of Jordan Algebras. Universitext. New York: Springer-Verlag, 2004

8
McCrimmon K, Zel’manov E. The structure of strongly prime quadratic Jordan algebras. Adv Math, 1988, 69: 132-222

DOI

9
Osborn J M, Passman D S. Derivations of skew polynomial rings. J Algebra, 1995, 176(2): 417-448

DOI

10
Passman D S. The Algebraic Structure of Group Rings. New York: John Weily & Sons, 1977

11
Yoshii Y. Coordinate algebras of extended affine Lie algebras of type A1. J Algebra, 2000, 234: 128-168

DOI

12
Yoshii Y. Root systems extended by an abelian group and their Lie algebras. J Lie Theory, 2004, 14: 371-394

13
Zhevlakov K A, Slin’ko A M, Shestakov I P, Shirshov A I. Rings that are Nearly Associative. New York: Academic Press, 1982

Outlines

/