Jordan tori for a torsion free abelian group
Saeid AZAM, Yoji YOSHII, Malihe YOUSOFZADEH
Jordan tori for a torsion free abelian group
We classify Jordan G-tori, where G is any torsion-free abelian group. Using the Zelmanov prime structure theorem, such a class divides into three types, the Hermitian type, the Clifford type, and the Albert type. We concretely describe Jordan G-tori of each type.
Jordan tori / extended affine Lie algebra / invariant affine reflection algebra
[1] |
Allison B, Azam S, Berman S, Gao Y, Pianzola A. Extended Affine Lie Algebras and Their Root Systems. Mem Amer Math Soc, Vol 126, No 603. Providence: Amer Math Soc, 1997
|
[2] |
Azam S, Yamane H, Yousofzadeh M. Reflectable bases for affine reflection systems. J Algebra, 2012, 371: 63-93
CrossRef
Google scholar
|
[3] |
Jacobson N. Structure Theory of Jordan Algebras. The University of Arkansas Lecture Notes in Mathematics, Vol 5. Fayetteville, AR, 1981
|
[4] |
Jacobson N. Structure and Representations of Jordan Algebras. Amer Math Soc Colloq Publ, Vol 39. Providence: Amer Math Soc, 1968
|
[5] |
Lam T Y. A First Course in Noncommutative Rings. Graduate Texts in Mathematics, Vol 131. Berlin: Springer-Verlag, 1991
CrossRef
Google scholar
|
[6] |
Loos O. Spiegelungsräume und homogene symmetrische Räume. Math Z, 1967, 99: 141-170
CrossRef
Google scholar
|
[7] |
McCrimmon K. A Taste of Jordan Algebras. Universitext. New York: Springer-Verlag, 2004
|
[8] |
McCrimmon K, Zel’manov E. The structure of strongly prime quadratic Jordan algebras. Adv Math, 1988, 69: 132-222
CrossRef
Google scholar
|
[9] |
Osborn J M, Passman D S. Derivations of skew polynomial rings. J Algebra, 1995, 176(2): 417-448
CrossRef
Google scholar
|
[10] |
Passman D S. The Algebraic Structure of Group Rings. New York: John Weily & Sons, 1977
|
[11] |
Yoshii Y. Coordinate algebras of extended affine Lie algebras of type A1. J Algebra, 2000, 234: 128-168
CrossRef
Google scholar
|
[12] |
Yoshii Y. Root systems extended by an abelian group and their Lie algebras. J Lie Theory, 2004, 14: 371-394
|
[13] |
Zhevlakov K A, Slin’ko A M, Shestakov I P, Shirshov A I. Rings that are Nearly Associative. New York: Academic Press, 1982
|
/
〈 | 〉 |