Jordan tori for a torsion free abelian group

Saeid AZAM , Yoji YOSHII , Malihe YOUSOFZADEH

Front. Math. China ›› 2015, Vol. 10 ›› Issue (3) : 477 -509.

PDF (298KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (3) : 477 -509. DOI: 10.1007/s11464-014-0414-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Jordan tori for a torsion free abelian group

Author information +
History +
PDF (298KB)

Abstract

We classify Jordan G-tori, where G is any torsion-free abelian group. Using the Zelmanov prime structure theorem, such a class divides into three types, the Hermitian type, the Clifford type, and the Albert type. We concretely describe Jordan G-tori of each type.

Keywords

Jordan tori / extended affine Lie algebra / invariant affine reflection algebra

Cite this article

Download citation ▾
Saeid AZAM, Yoji YOSHII, Malihe YOUSOFZADEH. Jordan tori for a torsion free abelian group. Front. Math. China, 2015, 10(3): 477-509 DOI:10.1007/s11464-014-0414-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allison B, Azam S, Berman S, Gao Y, Pianzola A. Extended Affine Lie Algebras and Their Root Systems. Mem Amer Math Soc, Vol 126, No 603. Providence: Amer Math Soc, 1997

[2]

Azam S, Yamane H, Yousofzadeh M. Reflectable bases for affine reflection systems. J Algebra, 2012, 371: 63-93

[3]

Jacobson N. Structure Theory of Jordan Algebras. The University of Arkansas Lecture Notes in Mathematics, Vol 5. Fayetteville, AR, 1981

[4]

Jacobson N. Structure and Representations of Jordan Algebras. Amer Math Soc Colloq Publ, Vol 39. Providence: Amer Math Soc, 1968

[5]

Lam T Y. A First Course in Noncommutative Rings. Graduate Texts in Mathematics, Vol 131. Berlin: Springer-Verlag, 1991

[6]

Loos O. Spiegelungsräume und homogene symmetrische Räume. Math Z, 1967, 99: 141-170

[7]

McCrimmon K. A Taste of Jordan Algebras. Universitext. New York: Springer-Verlag, 2004

[8]

McCrimmon K, Zel’manov E. The structure of strongly prime quadratic Jordan algebras. Adv Math, 1988, 69: 132-222

[9]

Osborn J M, Passman D S. Derivations of skew polynomial rings. J Algebra, 1995, 176(2): 417-448

[10]

Passman D S. The Algebraic Structure of Group Rings. New York: John Weily & Sons, 1977

[11]

Yoshii Y. Coordinate algebras of extended affine Lie algebras of type A1. J Algebra, 2000, 234: 128-168

[12]

Yoshii Y. Root systems extended by an abelian group and their Lie algebras. J Lie Theory, 2004, 14: 371-394

[13]

Zhevlakov K A, Slin’ko A M, Shestakov I P, Shirshov A I. Rings that are Nearly Associative. New York: Academic Press, 1982

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (298KB)

1104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/