Jordan tori for a torsion free abelian group

Saeid AZAM, Yoji YOSHII, Malihe YOUSOFZADEH

PDF(298 KB)
PDF(298 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (3) : 477-509. DOI: 10.1007/s11464-014-0414-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Jordan tori for a torsion free abelian group

Author information +
History +

Abstract

We classify Jordan G-tori, where G is any torsion-free abelian group. Using the Zelmanov prime structure theorem, such a class divides into three types, the Hermitian type, the Clifford type, and the Albert type. We concretely describe Jordan G-tori of each type.

Keywords

Jordan tori / extended affine Lie algebra / invariant affine reflection algebra

Cite this article

Download citation ▾
Saeid AZAM, Yoji YOSHII, Malihe YOUSOFZADEH. Jordan tori for a torsion free abelian group. Front. Math. China, 2015, 10(3): 477‒509 https://doi.org/10.1007/s11464-014-0414-2

References

[1]
Allison B, Azam S, Berman S, Gao Y, Pianzola A. Extended Affine Lie Algebras and Their Root Systems. Mem Amer Math Soc, Vol 126, No 603. Providence: Amer Math Soc, 1997
[2]
Azam S, Yamane H, Yousofzadeh M. Reflectable bases for affine reflection systems. J Algebra, 2012, 371: 63-93
CrossRef Google scholar
[3]
Jacobson N. Structure Theory of Jordan Algebras. The University of Arkansas Lecture Notes in Mathematics, Vol 5. Fayetteville, AR, 1981
[4]
Jacobson N. Structure and Representations of Jordan Algebras. Amer Math Soc Colloq Publ, Vol 39. Providence: Amer Math Soc, 1968
[5]
Lam T Y. A First Course in Noncommutative Rings. Graduate Texts in Mathematics, Vol 131. Berlin: Springer-Verlag, 1991
CrossRef Google scholar
[6]
Loos O. Spiegelungsräume und homogene symmetrische Räume. Math Z, 1967, 99: 141-170
CrossRef Google scholar
[7]
McCrimmon K. A Taste of Jordan Algebras. Universitext. New York: Springer-Verlag, 2004
[8]
McCrimmon K, Zel’manov E. The structure of strongly prime quadratic Jordan algebras. Adv Math, 1988, 69: 132-222
CrossRef Google scholar
[9]
Osborn J M, Passman D S. Derivations of skew polynomial rings. J Algebra, 1995, 176(2): 417-448
CrossRef Google scholar
[10]
Passman D S. The Algebraic Structure of Group Rings. New York: John Weily & Sons, 1977
[11]
Yoshii Y. Coordinate algebras of extended affine Lie algebras of type A1. J Algebra, 2000, 234: 128-168
CrossRef Google scholar
[12]
Yoshii Y. Root systems extended by an abelian group and their Lie algebras. J Lie Theory, 2004, 14: 371-394
[13]
Zhevlakov K A, Slin’ko A M, Shestakov I P, Shirshov A I. Rings that are Nearly Associative. New York: Academic Press, 1982

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(298 KB)

Accesses

Citations

Detail

Sections
Recommended

/