RESEARCH ARTICLE

A relation between tilting graphs and cluster-tilting graphs of hereditary algebras

  • Fang LI 1 ,
  • Yichao YANG , 1,2
Expand
  • 1. Department of Mathematics, Zhejiang University (Yuquan Campus), Hangzhou 310027, China
  • 2. Department of Mathematics, University of Sherbrooke, Sherbrooke J1K 2R1, Canada

Received date: 24 Jul 2013

Accepted date: 27 Aug 2014

Published date: 12 Feb 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We give the condition of isomorphisms between tilting graphs and cluster-tilting graphs of hereditary algebras. As a conclusion, it is proved that a graph is a skeleton graph of Stasheff polytope if and only if it is both the tilting graph of a hereditary algebra and also the cluster-tilting graph of another hereditary algebra. At last, when comparing such uniformity, the geometric realizations of simplicial complexes associated with tilting modules and clustertilting objects are discussed respectively.

Cite this article

Fang LI , Yichao YANG . A relation between tilting graphs and cluster-tilting graphs of hereditary algebras[J]. Frontiers of Mathematics in China, 2015 , 10(2) : 275 -291 . DOI: 10.1007/s11464-015-0426-6

1
Assem I, Simson D, Skowroński A. Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Math Soc Student Texts, 65. Cambridge: Cambridge Univ Press, 2006

2
Auslander M, Reiten I. Representation theory of Artin algebras. III. Almost split sequences. Comm Algebra, 1975, 3(3): 239-294

DOI

3
Buan A B, Marsh R J. Cluster-tilting theory. In: Trends in Representation Theory of Algebras and Related Topics. Contemporary Mathematics, 406. Providence: Amer Math Soc, 2006, 1-30

DOI

4
Buan A B, Marsh R J, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204(2): 572-618

DOI

5
Fomin S, Shapiro M, Thurston D. Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math, 2008, 201(1): 83-146

DOI

6
Fomin S, Zelevinsky A. Cluster algebras I: Foundations. J Amer Math Soc, 2002, 15(2): 497-529

DOI

7
Fomin S, Zelevinsky A. Y-systems and generalized associahedra. Ann Math, 2003, 158(3): 977-1018

DOI

8
Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Note Series, 119. Cambridge: Cambridge Univ Press, 1988

DOI

9
Happel D, Unger L. On the quiver of tilting modules. J Algebra, 2005, 284(2): 857-868

DOI

10
Hügel L A, Happel D, Krause H. Handbook of Tilting Theory. London Math Soc Lecture Note Series, 332. Cambridge: Cambridge Univ Press, 2007

11
Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent Math, 2008, 172(1): 117-168

DOI

12
Kase R. The number of arrows in the quiver of tilting modules over a path algebra of type A and D. Research Institute for Math Science Kôkyūroku, 2012, 1795: 154-162

13
Keller B. On triangulated orbit categories. Doc Math, 2005, 10: 551-581

14
Riedtmann C, Schofield A. On a simplicial complex associated with tilting modules. Comm Math Helv, 1991, 66(1): 70-78

DOI

15
Unger L, Ungruhe M. On the genus of the graph of tilting modules. Beiträge Algebra Geom, 2004, 45(2): 415-427

Outlines

/