A relation between tilting graphs and cluster-tilting graphs of hereditary algebras

Fang LI, Yichao YANG

PDF(267 KB)
PDF(267 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (2) : 275-291. DOI: 10.1007/s11464-015-0426-6
RESEARCH ARTICLE
RESEARCH ARTICLE

A relation between tilting graphs and cluster-tilting graphs of hereditary algebras

Author information +
History +

Abstract

We give the condition of isomorphisms between tilting graphs and cluster-tilting graphs of hereditary algebras. As a conclusion, it is proved that a graph is a skeleton graph of Stasheff polytope if and only if it is both the tilting graph of a hereditary algebra and also the cluster-tilting graph of another hereditary algebra. At last, when comparing such uniformity, the geometric realizations of simplicial complexes associated with tilting modules and clustertilting objects are discussed respectively.

Keywords

Tilting graph / cluster-tilting graph / cluster category / Stasheff polytope / linear quiver

Cite this article

Download citation ▾
Fang LI, Yichao YANG. A relation between tilting graphs and cluster-tilting graphs of hereditary algebras. Front. Math. China, 2015, 10(2): 275‒291 https://doi.org/10.1007/s11464-015-0426-6

References

[1]
Assem I, Simson D, Skowroński A. Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Math Soc Student Texts, 65. Cambridge: Cambridge Univ Press, 2006
[2]
Auslander M, Reiten I. Representation theory of Artin algebras. III. Almost split sequences. Comm Algebra, 1975, 3(3): 239-294
CrossRef Google scholar
[3]
Buan A B, Marsh R J. Cluster-tilting theory. In: Trends in Representation Theory of Algebras and Related Topics. Contemporary Mathematics, 406. Providence: Amer Math Soc, 2006, 1-30
CrossRef Google scholar
[4]
Buan A B, Marsh R J, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204(2): 572-618
CrossRef Google scholar
[5]
Fomin S, Shapiro M, Thurston D. Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math, 2008, 201(1): 83-146
CrossRef Google scholar
[6]
Fomin S, Zelevinsky A. Cluster algebras I: Foundations. J Amer Math Soc, 2002, 15(2): 497-529
CrossRef Google scholar
[7]
Fomin S, Zelevinsky A. Y-systems and generalized associahedra. Ann Math, 2003, 158(3): 977-1018
CrossRef Google scholar
[8]
Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Note Series, 119. Cambridge: Cambridge Univ Press, 1988
CrossRef Google scholar
[9]
Happel D, Unger L. On the quiver of tilting modules. J Algebra, 2005, 284(2): 857-868
CrossRef Google scholar
[10]
Hügel L A, Happel D, Krause H. Handbook of Tilting Theory. London Math Soc Lecture Note Series, 332. Cambridge: Cambridge Univ Press, 2007
[11]
Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent Math, 2008, 172(1): 117-168
CrossRef Google scholar
[12]
Kase R. The number of arrows in the quiver of tilting modules over a path algebra of type A and D. Research Institute for Math Science Kôkyūroku, 2012, 1795: 154-162
[13]
Keller B. On triangulated orbit categories. Doc Math, 2005, 10: 551-581
[14]
Riedtmann C, Schofield A. On a simplicial complex associated with tilting modules. Comm Math Helv, 1991, 66(1): 70-78
CrossRef Google scholar
[15]
Unger L, Ungruhe M. On the genus of the graph of tilting modules. Beiträge Algebra Geom, 2004, 45(2): 415-427

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(267 KB)

Accesses

Citations

Detail

Sections
Recommended

/