RESEARCH ARTICLE

Bondage number of strong product of two paths

  • Weisheng ZHAO ,
  • Heping ZHANG
Expand
  • School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

Received date: 25 Apr 2013

Accepted date: 21 May 2014

Published date: 12 Feb 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The bondage number b(G) of a graph G is the cardinality of a minimum set of edges whose removal from G results in a graph with a domination number greater than that of G. In this paper, we obtain the exact value of the bondage number of the strong product of two paths. That is, for any two positive integers m≥2 and n≥2, b(PmPn) = 7 - r(m) - r(n) if (r(m), r(n)) = (1, 1) or (3, 3), 6 - r(m) - r(n) otherwise, where r(t) is a function of positive integer t, defined as r(t) = 1 if t ≡ 1 (mod 3), r(t) = 2 if t ≡ 2 (mod 3), and r(t) = 3 if t ≡ 0 (mod 3).

Cite this article

Weisheng ZHAO , Heping ZHANG . Bondage number of strong product of two paths[J]. Frontiers of Mathematics in China, 2015 , 10(2) : 435 -460 . DOI: 10.1007/s11464-014-0391-5

1
Cao J X, Yuan X D, Sohn M Y. Domination and bondage number of C5 × Cn.Ars Combin, 2010, 97A: 299-310

2
Dunbar J E, Haynes T W, Teschner U, Volkmann L. Bondage, insensitivity, and reinforcement. In: Haynes T W, Hedetniemi S T, Slater P J, eds. Domination in Graphs: Advanced Topics. Monogr Textbooks Pure Appl Math, 209. New York: Marcel Dekker, 1998, 471-489

3
Fink J F, Jacobson M S, Kinch L F, Roberts J. The bondage number of a graph. Discrete Math, 1990, 86: 47-57

DOI

4
Hammack R, Imrich W, Klavžar S. Handbook of Product Graphs. New York-London: CRC Press, 2011

5
Hartnell B L, Jorgensen L K, Vestergaard P D, Whitehead C. Edge stability of the k-domination number of trees. Bull Inst Combin Appl, 1998, 22: 31-40

6
Hu F T, Xu J M. On the complexity of the bondage and reinforcement problems. J Complexity, 2012, 28: 192-201

DOI

7
Hu F T, Xu J M. Bondage number of mesh networks. Front Math China, 2012, 7(5): 813-826

DOI

8
Huang J, Xu J M. The bondage numbers of extended de Bruijn and Kautz digraphs. Comput Math Appl, 2006, 516(7): 1137-1147

DOI

9
Huang J, Xu J M. The bondage numbers and efficient dominations of vertex-transitive graphs. Discrete Math, 2008, 308(4): 571-582

DOI

10
Jacobson M S, Kinch L F. On the domination number of products of graphs I. Ars Combin, 1984, 18: 33-44

11
Kang L Y, Sohn M Y, Kim H K. Bondage number of the discrete torus Cn × C4.Discrete Math, 2005, 303: 80-86

DOI

12
Meir A, Moon J W. Relations between packing and covering numbers of a tree. Pacific J Math, 1975, 61: 225-233

DOI

13
Nowakowski R J, Rall D F. Associative graph products and their independence, domination and coloring numbers. Discuss Math Graph Theory, 1996, 16: 53-79

DOI

14
Sohn M Y, Yuan X D, Jeong H S. The bondage number of C3 × Cn.J Korean Math Soc, 2007, 44(6): 1213-1231

DOI

15
Teschner U. New results about the bondage number of a graph. Discrete Math, 1997, 171: 249-259

DOI

16
Zhang X, Liu J, Meng J X. The bondage number in complete t-partite digraphs. Inform Process Lett, 2009, 109(17): 997-1000

DOI

Outlines

/