Bondage number of strong product of two paths

Weisheng ZHAO, Heping ZHANG

PDF(249 KB)
PDF(249 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (2) : 435-460. DOI: 10.1007/s11464-014-0391-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Bondage number of strong product of two paths

Author information +
History +

Abstract

The bondage number b(G) of a graph G is the cardinality of a minimum set of edges whose removal from G results in a graph with a domination number greater than that of G. In this paper, we obtain the exact value of the bondage number of the strong product of two paths. That is, for any two positive integers m≥2 and n≥2, b(PmPn) = 7 - r(m) - r(n) if (r(m), r(n)) = (1, 1) or (3, 3), 6 - r(m) - r(n) otherwise, where r(t) is a function of positive integer t, defined as r(t) = 1 if t ≡ 1 (mod 3), r(t) = 2 if t ≡ 2 (mod 3), and r(t) = 3 if t ≡ 0 (mod 3).

Keywords

Bondage number / strong product / path

Cite this article

Download citation ▾
Weisheng ZHAO, Heping ZHANG. Bondage number of strong product of two paths. Front. Math. China, 2015, 10(2): 435‒460 https://doi.org/10.1007/s11464-014-0391-5

References

[1]
Cao J X, Yuan X D, Sohn M Y. Domination and bondage number of C5 × Cn.Ars Combin, 2010, 97A: 299-310
[2]
Dunbar J E, Haynes T W, Teschner U, Volkmann L. Bondage, insensitivity, and reinforcement. In: Haynes T W, Hedetniemi S T, Slater P J, eds. Domination in Graphs: Advanced Topics. Monogr Textbooks Pure Appl Math, 209. New York: Marcel Dekker, 1998, 471-489
[3]
Fink J F, Jacobson M S, Kinch L F, Roberts J. The bondage number of a graph. Discrete Math, 1990, 86: 47-57
CrossRef Google scholar
[4]
Hammack R, Imrich W, Klavžar S. Handbook of Product Graphs. New York-London: CRC Press, 2011
[5]
Hartnell B L, Jorgensen L K, Vestergaard P D, Whitehead C. Edge stability of the k-domination number of trees. Bull Inst Combin Appl, 1998, 22: 31-40
[6]
Hu F T, Xu J M. On the complexity of the bondage and reinforcement problems. J Complexity, 2012, 28: 192-201
CrossRef Google scholar
[7]
Hu F T, Xu J M. Bondage number of mesh networks. Front Math China, 2012, 7(5): 813-826
CrossRef Google scholar
[8]
Huang J, Xu J M. The bondage numbers of extended de Bruijn and Kautz digraphs. Comput Math Appl, 2006, 516(7): 1137-1147
CrossRef Google scholar
[9]
Huang J, Xu J M. The bondage numbers and efficient dominations of vertex-transitive graphs. Discrete Math, 2008, 308(4): 571-582
CrossRef Google scholar
[10]
Jacobson M S, Kinch L F. On the domination number of products of graphs I. Ars Combin, 1984, 18: 33-44
[11]
Kang L Y, Sohn M Y, Kim H K. Bondage number of the discrete torus Cn × C4.Discrete Math, 2005, 303: 80-86
CrossRef Google scholar
[12]
Meir A, Moon J W. Relations between packing and covering numbers of a tree. Pacific J Math, 1975, 61: 225-233
CrossRef Google scholar
[13]
Nowakowski R J, Rall D F. Associative graph products and their independence, domination and coloring numbers. Discuss Math Graph Theory, 1996, 16: 53-79
CrossRef Google scholar
[14]
Sohn M Y, Yuan X D, Jeong H S. The bondage number of C3 × Cn.J Korean Math Soc, 2007, 44(6): 1213-1231
CrossRef Google scholar
[15]
Teschner U. New results about the bondage number of a graph. Discrete Math, 1997, 171: 249-259
CrossRef Google scholar
[16]
Zhang X, Liu J, Meng J X. The bondage number in complete t-partite digraphs. Inform Process Lett, 2009, 109(17): 997-1000
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(249 KB)

Accesses

Citations

Detail

Sections
Recommended

/