Bondage number of strong product of two paths
Weisheng ZHAO, Heping ZHANG
Bondage number of strong product of two paths
The bondage number b(G) of a graph G is the cardinality of a minimum set of edges whose removal from G results in a graph with a domination number greater than that of G. In this paper, we obtain the exact value of the bondage number of the strong product of two paths. That is, for any two positive integers m≥2 and n≥2, b(PmPn) = 7 - r(m) - r(n) if (r(m), r(n)) = (1, 1) or (3, 3), 6 - r(m) - r(n) otherwise, where r(t) is a function of positive integer t, defined as r(t) = 1 if t ≡ 1 (mod 3), r(t) = 2 if t ≡ 2 (mod 3), and r(t) = 3 if t ≡ 0 (mod 3).
Bondage number / strong product / path
[1] |
Cao J X, Yuan X D, Sohn M Y. Domination and bondage number of C5 × Cn.Ars Combin, 2010, 97A: 299-310
|
[2] |
Dunbar J E, Haynes T W, Teschner U, Volkmann L. Bondage, insensitivity, and reinforcement. In: Haynes T W, Hedetniemi S T, Slater P J, eds. Domination in Graphs: Advanced Topics. Monogr Textbooks Pure Appl Math, 209. New York: Marcel Dekker, 1998, 471-489
|
[3] |
Fink J F, Jacobson M S, Kinch L F, Roberts J. The bondage number of a graph. Discrete Math, 1990, 86: 47-57
CrossRef
Google scholar
|
[4] |
Hammack R, Imrich W, Klavžar S. Handbook of Product Graphs. New York-London: CRC Press, 2011
|
[5] |
Hartnell B L, Jorgensen L K, Vestergaard P D, Whitehead C. Edge stability of the k-domination number of trees. Bull Inst Combin Appl, 1998, 22: 31-40
|
[6] |
Hu F T, Xu J M. On the complexity of the bondage and reinforcement problems. J Complexity, 2012, 28: 192-201
CrossRef
Google scholar
|
[7] |
Hu F T, Xu J M. Bondage number of mesh networks. Front Math China, 2012, 7(5): 813-826
CrossRef
Google scholar
|
[8] |
Huang J, Xu J M. The bondage numbers of extended de Bruijn and Kautz digraphs. Comput Math Appl, 2006, 516(7): 1137-1147
CrossRef
Google scholar
|
[9] |
Huang J, Xu J M. The bondage numbers and efficient dominations of vertex-transitive graphs. Discrete Math, 2008, 308(4): 571-582
CrossRef
Google scholar
|
[10] |
Jacobson M S, Kinch L F. On the domination number of products of graphs I. Ars Combin, 1984, 18: 33-44
|
[11] |
Kang L Y, Sohn M Y, Kim H K. Bondage number of the discrete torus Cn × C4.Discrete Math, 2005, 303: 80-86
CrossRef
Google scholar
|
[12] |
Meir A, Moon J W. Relations between packing and covering numbers of a tree. Pacific J Math, 1975, 61: 225-233
CrossRef
Google scholar
|
[13] |
Nowakowski R J, Rall D F. Associative graph products and their independence, domination and coloring numbers. Discuss Math Graph Theory, 1996, 16: 53-79
CrossRef
Google scholar
|
[14] |
Sohn M Y, Yuan X D, Jeong H S. The bondage number of C3 × Cn.J Korean Math Soc, 2007, 44(6): 1213-1231
CrossRef
Google scholar
|
[15] |
Teschner U. New results about the bondage number of a graph. Discrete Math, 1997, 171: 249-259
CrossRef
Google scholar
|
[16] |
Zhang X, Liu J, Meng J X. The bondage number in complete t-partite digraphs. Inform Process Lett, 2009, 109(17): 997-1000
CrossRef
Google scholar
|
/
〈 | 〉 |