Frontiers of Mathematics in China >
A class of Lie algebras arising from intersection matrices
Received date: 09 May 2013
Accepted date: 19 Jul 2014
Published date: 30 Dec 2014
Copyright
We find a class of Lie algebras, which are defined from the symmetrizable generalized intersection matrices. However, such algebras are different from generalized intersection matrix algebras and intersection matrix algebras. Moreover, such Lie algebras generated by semi-positive definite matrices can be classified by the modified Dynkin diagrams.
Li-meng XIA , Naihong HU . A class of Lie algebras arising from intersection matrices[J]. Frontiers of Mathematics in China, 2015 , 10(1) : 185 -198 . DOI: 10.1007/s11464-014-0418-y
1 |
Allison B, Benkart G, Gao Y. Lie Algebras Graded by the Root System BCr, r≥2. Mem Amer Math Soc, No 751. Providence: Amer Math Soc, 2002
|
2 |
Benkart G, Zelmanov E. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126: 1-45
|
3 |
Berman S. On generators and relations for certain involutory subalgebras of Kac-Moody Lie algebras. Comm Algebra, 1989, 17: 3165-3185
|
4 |
Berman S, Jurisich E, Tan S. Beyond Borcherds Lie algebras and inside. Trans Amer Math Soc, 2001, 353: 1183-1219
|
5 |
Berman S, Moody R V. Lie algebras graded by finite root systems and the intersection matrix algebras of Slowdowy. Invent Math, 1992, 108: 323-347
|
6 |
Bhargava S, Gao Y. Realizations of BCr-graded intersection matrix algebras with grading subalgebras of type Br, r≥3. Pacific J Math, 2013, 263(2): 257-281
|
7 |
Carter R. Lie Algebras of Finite and Affine Type. Cambridge: Cambridge Univ Press, 2005
|
8 |
Eswara Rao S, Moody R V, Yokonuma T. Lie algebras and Weyl groups arising from vertex operator representations. Nova J Algebra and Geometry, 1992, 1: 15-57
|
9 |
Gabber O, Kac V G. On defining relations of certain infinite-dimensional Lie algebras. Bull Amer Math Soc (NS), 1981, 5: 185-189
|
10 |
Gao Y. Involutive Lie algebras graded by finite root systems and compact forms of IM algebras. Math Z, 1996, 223: 651-672
|
11 |
Gao Y, Xia L. Finite-dimensional representations for a class of generalized intersection matrix algebras. arXiv: 1404.4310v1
|
12 |
Humphreys J E. Introduction to Lie Algebras and Representation Theory. New York: Springer, 1972
|
13 |
Jacobson N. Lie Algebras. New York: Inter Science, 1962
|
14 |
Kac V G. Infinite Dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge, Univ Press, 1990
|
15 |
Lusztig G. Introduction to quantum groups. Boston: Birkhäuser, 1993
|
16 |
Neher E. Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids. Amer J Math, 1996, 118(2): 439-491
|
17 |
Peng L. Intersection matrix Lie algebras and Ringel-Hall Lie algebras of tilted algebras. In: Happel D, Zhang Y B, eds. Proc 9-th Inter Conf Representation of Algebras, Vol I. Beijing: Beijing Normal Univ Press, 2002, 98-108
|
18 |
Peng L, Xu M. Symmetrizable intersection matrices and their root systems. arXiv: 0912.1024
|
19 |
Slodowy P. Singularitäaten, Kac-Moody Lie-Algebren, assoziierte Gruppen und Verallgemeinerungen. Habilitationsschrift, Universität Bonn, March 1984
|
20 |
Slodowy P. Beyond Kac-Moody algebras and inside. Can Math Soc Conf Proc, 1986, 5: 361-371
|
21 |
Xu M, Peng L. Symmetrizable intersection matrix Lie algebras. Algebra Colloq 2011, 18(4): 639-646
|
/
〈 | 〉 |