A class of Lie algebras arising from intersection matrices

Li-meng XIA, Naihong HU

PDF(168 KB)
PDF(168 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (1) : 185-198. DOI: 10.1007/s11464-014-0418-y
RESEARCH ARTICLE
RESEARCH ARTICLE

A class of Lie algebras arising from intersection matrices

Author information +
History +

Abstract

We find a class of Lie algebras, which are defined from the symmetrizable generalized intersection matrices. However, such algebras are different from generalized intersection matrix algebras and intersection matrix algebras. Moreover, such Lie algebras generated by semi-positive definite matrices can be classified by the modified Dynkin diagrams.

Keywords

Intersection matrices / extended affine Lie algebra / generator / classification

Cite this article

Download citation ▾
Li-meng XIA, Naihong HU. A class of Lie algebras arising from intersection matrices. Front. Math. China, 2015, 10(1): 185‒198 https://doi.org/10.1007/s11464-014-0418-y

References

[1]
Allison B, Benkart G, Gao Y. Lie Algebras Graded by the Root System BCr, r≥2. Mem Amer Math Soc, No 751. Providence: Amer Math Soc, 2002
[2]
Benkart G, Zelmanov E. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126: 1-45
CrossRef Google scholar
[3]
Berman S. On generators and relations for certain involutory subalgebras of Kac-Moody Lie algebras. Comm Algebra, 1989, 17: 3165-3185
CrossRef Google scholar
[4]
Berman S, Jurisich E, Tan S. Beyond Borcherds Lie algebras and inside. Trans Amer Math Soc, 2001, 353: 1183-1219
CrossRef Google scholar
[5]
Berman S, Moody R V. Lie algebras graded by finite root systems and the intersection matrix algebras of Slowdowy. Invent Math, 1992, 108: 323-347
CrossRef Google scholar
[6]
Bhargava S, Gao Y. Realizations of BCr-graded intersection matrix algebras with grading subalgebras of type Br, r≥3. Pacific J Math, 2013, 263(2): 257-281
CrossRef Google scholar
[7]
Carter R. Lie Algebras of Finite and Affine Type. Cambridge: Cambridge Univ Press, 2005
CrossRef Google scholar
[8]
Eswara Rao S, Moody R V, Yokonuma T. Lie algebras and Weyl groups arising from vertex operator representations. Nova J Algebra and Geometry, 1992, 1: 15-57
[9]
Gabber O, Kac V G. On defining relations of certain infinite-dimensional Lie algebras. Bull Amer Math Soc (NS), 1981, 5: 185-189
CrossRef Google scholar
[10]
Gao Y. Involutive Lie algebras graded by finite root systems and compact forms of IM algebras. Math Z, 1996, 223: 651-672
CrossRef Google scholar
[11]
Gao Y, Xia L. Finite-dimensional representations for a class of generalized intersection matrix algebras. arXiv: 1404.4310v1
[12]
Humphreys J E. Introduction to Lie Algebras and Representation Theory. New York: Springer, 1972
CrossRef Google scholar
[13]
Jacobson N. Lie Algebras. New York: Inter Science, 1962
[14]
Kac V G. Infinite Dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge, Univ Press, 1990
CrossRef Google scholar
[15]
Lusztig G. Introduction to quantum groups. Boston: Birkhäuser, 1993
[16]
Neher E. Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids. Amer J Math, 1996, 118(2): 439-491
CrossRef Google scholar
[17]
Peng L. Intersection matrix Lie algebras and Ringel-Hall Lie algebras of tilted algebras. In: Happel D, Zhang Y B, eds. Proc 9-th Inter Conf Representation of Algebras, Vol I. Beijing: Beijing Normal Univ Press, 2002, 98-108
[18]
Peng L, Xu M. Symmetrizable intersection matrices and their root systems. arXiv: 0912.1024
[19]
Slodowy P. Singularitäaten, Kac-Moody Lie-Algebren, assoziierte Gruppen und Verallgemeinerungen. Habilitationsschrift, Universität Bonn, March 1984
[20]
Slodowy P. Beyond Kac-Moody algebras and inside. Can Math Soc Conf Proc, 1986, 5: 361-371
[21]
Xu M, Peng L. Symmetrizable intersection matrix Lie algebras. Algebra Colloq 2011, 18(4): 639-646
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(168 KB)

Accesses

Citations

Detail

Sections
Recommended

/