RESEARCH ARTICLE

Effective algorithms for computing triangular operator in Schubert calculus

  • Kai ZHANG , 1 ,
  • Jiachuan ZHANG 1 ,
  • Haibao DUAN 2 ,
  • Jingzhi LI , 3
Expand
  • 1. Department of Mathematics, Jilin University, Changchun 130023, China
  • 2. Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China
  • 3. Faculty of Science, South University of Science and Technology of China, Shenzhen 518055, China

Received date: 01 Jun 2014

Accepted date: 18 Jul 2014

Published date: 30 Dec 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We develop two parallel algorithms progressively based on C++ to compute a triangle operator problem, which plays an important role in the study of Schubert calculus. We also analyse the computational complexity of each algorithm by using combinatorial quantities, such as the Catalan number, the Motzkin number, and the central binomial coefficients. The accuracy and efficiency of our algorithms have been justified by numerical experiments.

Cite this article

Kai ZHANG , Jiachuan ZHANG , Haibao DUAN , Jingzhi LI . Effective algorithms for computing triangular operator in Schubert calculus[J]. Frontiers of Mathematics in China, 2015 , 10(1) : 221 -237 . DOI: 10.1007/s11464-014-0417-z

1
Bott R, Samelson H. The cohomology ring of G/T. Nat Acad Sci, 1955, 41: 490-492

DOI

2
Donaghey R, Shapiro L W. Motzkin numbers. J Combin Theory Ser A, 1977, 23: 291-301

DOI

3
Duan H B. Multiplicative rule of Schubert classes. Invent Math, 2005, 159(2): 407-436

DOI

4
Duan H B. The degree of a Schubert variety. Adv Math, 2003, 180: 112-133

DOI

5
Duan H B, Zhao X Z. Algorithm for multiplying Schubert classes. Inter J Algebra Comput, 2006, 16: 1197-1210

DOI

6
Duan H B, Zhao X Z. A unified formula for Steenrod operations in flag manifolds. Compos Math, 2007, 143(1): 257-270

DOI

7
Duan H B, Zhao X Z. Schubert presentation of the integral cohomology ring of the flag manifolds G/T. arXiv: 0801.2444

8
Duan H B, Zhao X Z. The Chow rings of generalized Grassmannians. Found Comput Math, 2010, 10(3): 245-274

DOI

9
Elizaldea S, Mansour T. Restricted Motzkin permutations, Motzkin paths, continued fractions, and Chebyshev polynomials. Discrete Math, 2005, 305(3): 170-189

DOI

10
Huber B, Sottile F, Sturmfels B. Numerical Schubert calculus. J Symbolic Comput, 1998, 26: 767-788

DOI

11
Kleiman S, Laksov D. Schubert calculus. Amer Math Monthly, 1974, 79: 1061-1082

DOI

12
Knuth D. The Art of Computer Programming, Vol 3. Sorting and Searching. Boston: Addison-Wesley, 1973, 506-542

13
Koshy T. Catalan Numbers with Applications. Oxford: Oxford University Press, 2008

DOI

14
Li T Y, Wang X S, Wu M N. Numerical Schubert calculus by the Pieri homotopy algorithm. SIAM J Numer Anal, 2002, 40: 578-600

DOI

15
Pitman J. Probability. Berlin: Springer-Verlag, 1993

16
Sottile F. Four entries for Kluwer Encyclopaedia of Mathematics. arXiv: math/0102047

Outlines

/