Effective algorithms for computing triangular operator in Schubert calculus

Kai ZHANG, Jiachuan ZHANG, Haibao DUAN, Jingzhi LI

PDF(239 KB)
PDF(239 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (1) : 221-237. DOI: 10.1007/s11464-014-0417-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Effective algorithms for computing triangular operator in Schubert calculus

Author information +
History +

Abstract

We develop two parallel algorithms progressively based on C++ to compute a triangle operator problem, which plays an important role in the study of Schubert calculus. We also analyse the computational complexity of each algorithm by using combinatorial quantities, such as the Catalan number, the Motzkin number, and the central binomial coefficients. The accuracy and efficiency of our algorithms have been justified by numerical experiments.

Keywords

Triangular operator / Schubert calculus / parallel algorithm / central binomial coefficient

Cite this article

Download citation ▾
Kai ZHANG, Jiachuan ZHANG, Haibao DUAN, Jingzhi LI. Effective algorithms for computing triangular operator in Schubert calculus. Front. Math. China, 2015, 10(1): 221‒237 https://doi.org/10.1007/s11464-014-0417-z

References

[1]
Bott R, Samelson H. The cohomology ring of G/T. Nat Acad Sci, 1955, 41: 490-492
CrossRef Google scholar
[2]
Donaghey R, Shapiro L W. Motzkin numbers. J Combin Theory Ser A, 1977, 23: 291-301
CrossRef Google scholar
[3]
Duan H B. Multiplicative rule of Schubert classes. Invent Math, 2005, 159(2): 407-436
CrossRef Google scholar
[4]
Duan H B. The degree of a Schubert variety. Adv Math, 2003, 180: 112-133
CrossRef Google scholar
[5]
Duan H B, Zhao X Z. Algorithm for multiplying Schubert classes. Inter J Algebra Comput, 2006, 16: 1197-1210
CrossRef Google scholar
[6]
Duan H B, Zhao X Z. A unified formula for Steenrod operations in flag manifolds. Compos Math, 2007, 143(1): 257-270
CrossRef Google scholar
[7]
Duan H B, Zhao X Z. Schubert presentation of the integral cohomology ring of the flag manifolds G/T. arXiv: 0801.2444
[8]
Duan H B, Zhao X Z. The Chow rings of generalized Grassmannians. Found Comput Math, 2010, 10(3): 245-274
CrossRef Google scholar
[9]
Elizaldea S, Mansour T. Restricted Motzkin permutations, Motzkin paths, continued fractions, and Chebyshev polynomials. Discrete Math, 2005, 305(3): 170-189
CrossRef Google scholar
[10]
Huber B, Sottile F, Sturmfels B. Numerical Schubert calculus. J Symbolic Comput, 1998, 26: 767-788
CrossRef Google scholar
[11]
Kleiman S, Laksov D. Schubert calculus. Amer Math Monthly, 1974, 79: 1061-1082
CrossRef Google scholar
[12]
Knuth D. The Art of Computer Programming, Vol 3. Sorting and Searching. Boston: Addison-Wesley, 1973, 506-542
[13]
Koshy T. Catalan Numbers with Applications. Oxford: Oxford University Press, 2008
CrossRef Google scholar
[14]
Li T Y, Wang X S, Wu M N. Numerical Schubert calculus by the Pieri homotopy algorithm. SIAM J Numer Anal, 2002, 40: 578-600
CrossRef Google scholar
[15]
Pitman J. Probability. Berlin: Springer-Verlag, 1993
[16]
Sottile F. Four entries for Kluwer Encyclopaedia of Mathematics. arXiv: math/0102047

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(239 KB)

Accesses

Citations

Detail

Sections
Recommended

/