Frontiers of Mathematics in China >
Property (ω) and topological uniform descent
Received date: 13 Dec 2013
Accepted date: 27 Mar 2014
Published date: 29 Oct 2014
Copyright
We give the necessary and sufficient condition for a bounded linear operator with property (ω) by means of the induced spectrum of topological uniform descent, and investigate the permanence of property (ω) under some commuting perturbations by power finite rank operators. In addition, the theory is exemplified in the case of algebraically paranormal operators.
Qiaoling XIN , Lining JIANG . Property (ω) and topological uniform descent[J]. Frontiers of Mathematics in China, 2014 , 9(6) : 1411 -1426 . DOI: 10.1007/s11464-014-0373-7
1 |
Aiena P. Property (ω) and perturbations II. J Math Anal Appl, 2008, 342: 830-837
|
2 |
Aiena P. Algebraically paranormal operato<?Pub Caret?>rs on Banach spaces. Banach J Math Anal, 2013, 7(2): 136-145
|
3 |
Aiena P, Aponte E, Bazan E. Weyl type theorems for left and right polaroid operators. Integral Equations Operator Theory, 2010, 66: 1-20
|
4 |
Aiena P, Biondi M T. Property (ω) and perturbations. J Math Anal Appl, 2007, 336: 683-692
|
5 |
Aiena P, Biondi M T, Villafane F. Property (ω) and perturbations III. J Math Anal Appl, 2009, 353: 205-214
|
6 |
Aiena P, Guillen J R, Peña P. Property (ω) for perturbations of polaroid operators. Linear Algebra Appl, 2008, 428: 1791-1802
|
7 |
Aiena P, Monsalve O. Operators which do not have the single valued extension property. J Math Anal Appl, 2000, 250: 435-448
|
8 |
Aiena P, Peña P. A variation onWeyl’s theorem. J Math Anal Appl, 2006, 324: 566-579
|
9 |
Cao Xiaohong. Weyl spcetrum of the products of operators. J Korean Math Soc, 2008, 45(3): 771-780
|
10 |
Cao X, Liu A. Generalized Kato type operators and property (ω) under perturbations. Linear Algebra Appl, 2012, 436: 2231-2239
|
11 |
Cao X, Xin Q. Consistent invertibility and perturbations of the generalized property (ω).Acta Math Sinica (Chin Ser), 2012, 55: 91-100 (in Chinese)
|
12 |
Curto R E, Han Y M. Weyl’s theorem for algebraically paranormal operators. Integral Equations Operator Theory, 2003, 47: 307-314
|
13 |
Grabiner S. Uniform ascent and descent of bounded operators. J Math Soc Japan, 1982, 34(2): 317-337
|
14 |
Heuser H. Functional Analysis. New York: Wiley, 1982
|
15 |
Rakočević V. On a class of operators. Mat Vesnik, 1985, 37: 423-426
|
16 |
Rakočević V. Semi-Browder operators and perturbations. Studia Math, 1997, 122: 131-137
|
/
〈 | 〉 |