RESEARCH ARTICLE

Property (ω) and topological uniform descent

  • Qiaoling XIN ,
  • Lining JIANG
Expand
  • School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China

Received date: 13 Dec 2013

Accepted date: 27 Mar 2014

Published date: 29 Oct 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We give the necessary and sufficient condition for a bounded linear operator with property (ω) by means of the induced spectrum of topological uniform descent, and investigate the permanence of property (ω) under some commuting perturbations by power finite rank operators. In addition, the theory is exemplified in the case of algebraically paranormal operators.

Cite this article

Qiaoling XIN , Lining JIANG . Property (ω) and topological uniform descent[J]. Frontiers of Mathematics in China, 2014 , 9(6) : 1411 -1426 . DOI: 10.1007/s11464-014-0373-7

1
Aiena P. Property (ω) and perturbations II. J Math Anal Appl, 2008, 342: 830-837

DOI

2
Aiena P. Algebraically paranormal operato<?Pub Caret?>rs on Banach spaces. Banach J Math Anal, 2013, 7(2): 136-145

DOI

3
Aiena P, Aponte E, Bazan E. Weyl type theorems for left and right polaroid operators. Integral Equations Operator Theory, 2010, 66: 1-20

DOI

4
Aiena P, Biondi M T. Property (ω) and perturbations. J Math Anal Appl, 2007, 336: 683-692

DOI

5
Aiena P, Biondi M T, Villafane F. Property (ω) and perturbations III. J Math Anal Appl, 2009, 353: 205-214

DOI

6
Aiena P, Guillen J R, Peña P. Property (ω) for perturbations of polaroid operators. Linear Algebra Appl, 2008, 428: 1791-1802

DOI

7
Aiena P, Monsalve O. Operators which do not have the single valued extension property. J Math Anal Appl, 2000, 250: 435-448

DOI

8
Aiena P, Peña P. A variation onWeyl’s theorem. J Math Anal Appl, 2006, 324: 566-579

DOI

9
Cao Xiaohong. Weyl spcetrum of the products of operators. J Korean Math Soc, 2008, 45(3): 771-780

DOI

10
Cao X, Liu A. Generalized Kato type operators and property (ω) under perturbations. Linear Algebra Appl, 2012, 436: 2231-2239

DOI

11
Cao X, Xin Q. Consistent invertibility and perturbations of the generalized property (ω).Acta Math Sinica (Chin Ser), 2012, 55: 91-100 (in Chinese)

12
Curto R E, Han Y M. Weyl’s theorem for algebraically paranormal operators. Integral Equations Operator Theory, 2003, 47: 307-314

DOI

13
Grabiner S. Uniform ascent and descent of bounded operators. J Math Soc Japan, 1982, 34(2): 317-337

DOI

14
Heuser H. Functional Analysis. New York: Wiley, 1982

15
Rakočević V. On a class of operators. Mat Vesnik, 1985, 37: 423-426

16
Rakočević V. Semi-Browder operators and perturbations. Studia Math, 1997, 122: 131-137

Outlines

/