Property (ω) and topological uniform descent

Qiaoling XIN, Lining JIANG

PDF(141 KB)
PDF(141 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (6) : 1411-1426. DOI: 10.1007/s11464-014-0373-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Property (ω) and topological uniform descent

Author information +
History +

Abstract

We give the necessary and sufficient condition for a bounded linear operator with property (ω) by means of the induced spectrum of topological uniform descent, and investigate the permanence of property (ω) under some commuting perturbations by power finite rank operators. In addition, the theory is exemplified in the case of algebraically paranormal operators.

Keywords

Topological uniform descent / consistent in Fredholm and index / property (ω)

Cite this article

Download citation ▾
Qiaoling XIN, Lining JIANG. Property (ω) and topological uniform descent. Front. Math. China, 2014, 9(6): 1411‒1426 https://doi.org/10.1007/s11464-014-0373-7

References

[1]
Aiena P. Property (ω) and perturbations II. J Math Anal Appl, 2008, 342: 830-837
CrossRef Google scholar
[2]
Aiena P. Algebraically paranormal operato<?Pub Caret?>rs on Banach spaces. Banach J Math Anal, 2013, 7(2): 136-145
CrossRef Google scholar
[3]
Aiena P, Aponte E, Bazan E. Weyl type theorems for left and right polaroid operators. Integral Equations Operator Theory, 2010, 66: 1-20
CrossRef Google scholar
[4]
Aiena P, Biondi M T. Property (ω) and perturbations. J Math Anal Appl, 2007, 336: 683-692
CrossRef Google scholar
[5]
Aiena P, Biondi M T, Villafane F. Property (ω) and perturbations III. J Math Anal Appl, 2009, 353: 205-214
CrossRef Google scholar
[6]
Aiena P, Guillen J R, Peña P. Property (ω) for perturbations of polaroid operators. Linear Algebra Appl, 2008, 428: 1791-1802
CrossRef Google scholar
[7]
Aiena P, Monsalve O. Operators which do not have the single valued extension property. J Math Anal Appl, 2000, 250: 435-448
CrossRef Google scholar
[8]
Aiena P, Peña P. A variation onWeyl’s theorem. J Math Anal Appl, 2006, 324: 566-579
CrossRef Google scholar
[9]
Cao Xiaohong. Weyl spcetrum of the products of operators. J Korean Math Soc, 2008, 45(3): 771-780
CrossRef Google scholar
[10]
Cao X, Liu A. Generalized Kato type operators and property (ω) under perturbations. Linear Algebra Appl, 2012, 436: 2231-2239
CrossRef Google scholar
[11]
Cao X, Xin Q. Consistent invertibility and perturbations of the generalized property (ω).Acta Math Sinica (Chin Ser), 2012, 55: 91-100 (in Chinese)
[12]
Curto R E, Han Y M. Weyl’s theorem for algebraically paranormal operators. Integral Equations Operator Theory, 2003, 47: 307-314
CrossRef Google scholar
[13]
Grabiner S. Uniform ascent and descent of bounded operators. J Math Soc Japan, 1982, 34(2): 317-337
CrossRef Google scholar
[14]
Heuser H. Functional Analysis. New York: Wiley, 1982
[15]
Rakočević V. On a class of operators. Mat Vesnik, 1985, 37: 423-426
[16]
Rakočević V. Semi-Browder operators and perturbations. Studia Math, 1997, 122: 131-137

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(141 KB)

Accesses

Citations

Detail

Sections
Recommended

/