RESEARCH ARTICLE

Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources

  • Hui WANG , 1,2 ,
  • Tiecheng XIA 2
Expand
  • 1. College of Art and Sciences, Shanghai Maritime University, Shanghai 201306, China
  • 2. Department of Mathematics, Shanghai University, Shanghai 200444, China

Received date: 09 Jul 2014

Accepted date: 19 Jul 2014

Published date: 29 Oct 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A super Jaulent-Miodek hierarchy and its super Hamiltonian structures are constructed by means of a kind of Lie super algebras and super trace identity. Moreover, the self-consistent sources of the super Jaulent-Miodek hierarchy is presented based on the theory of self-consistent sources. Furthermore, the infinite conservation laws of the super Jaulent-Miodek hierarchy are also obtained. It is worth noting that as even variables are boson variables, odd variables are fermi variables in the spectral problem, the commutator is different from the ordinary one.

Cite this article

Hui WANG , Tiecheng XIA . Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources[J]. Frontiers of Mathematics in China, 2014 , 9(6) : 1367 -1379 . DOI: 10.1007/s11464-014-0419-x

1
Chowdhury A R, Roy S. On the Backlund transformation and Hamiltonian properties of superevaluation equations. J Math Phys, 1986, 27: 2464

DOI

2
Dong H H, Wang X Z. Lie algebras and Lie super algebra for the integrable couplings of NLS-MKdV hierarchy. Commun Nonlinear Sci Numer Simul, 2009, 14: 4071-4077

DOI

3
Ge J Y, Xia T C. A New integrable couplings of Classical-Boussinesq hierarchy with self-consistent sources. Commun Theor Phys, 2010, 54: 1-6

DOI

4
Guo F K. A hierarchy of integrable Hamiltonian equations. Math Appl Sin, 2000, 23(2): 181-187

5
He J S, Yu J, Cheng Y. Binary nonlinearization of the super AKNS system. Modern Phys Lett B, 2008, 22: 275-288

DOI

6
Hu X B. An approach to generate superextensions of integrable systems. J Phys A: Math Gen, 1997, 30: 619-632

DOI

7
Jaulent M, Miodek K. Nonlinear evolution equations associated with enegry-dependent Schrödinger potentials. Lett Math Phys, 1976, 1: 243

DOI

8
Li Z. Super-Burgers soliton hierarchy and it super-Hamiltonian structure. Modern Phys Lett B, 2009, 23: 2907-2914

DOI

9
Ma W X. Integrable couplings of soliton equations by perturbations I. A general theory and application to the KdV hierarchy. Methods Appl Anal, 2000, 7: 21-56

10
Ma W X. Variational identities and applications to Hamiltonian structures of soliton equations. Nonlinear Anal, 2009, 71: 1716-1726

DOI

11
Ma W X, Fuchssteiner B. Integrable theory of the perturbation equations. Chaos Solitons Fractals, 1996, 7: 1227-1250

DOI

12
Ma W X, Fuchssteiner B. The bi-Hamiltonian structures of the perturbation equ<?Pub Caret?>ations of KdV hierarchy. Phys Lett A, 1996, 213: 49-55

DOI

13
Ma W X, He J S, Qin Z Y. A supertrace identity and its applications to superintegrable systems. J Math Phys, 2008, 49: 033511

DOI

14
Mel’nikov V K. Integration of the nonlinear Schrödinger equation with a source. Inverse Problems, 1992, 8: 133

DOI

15
Miua R M, Gardner C S, Gardner M D. The KdV equation has infinitely many integrals of motion conservation laws and constants of motion. J Math Phys, 1968, 9: 1204-1209

16
Shchesnovich V S, Doktorov E V. Modified Manakov system with self-consistent source. Phys Lett A, 1996, 213: 23-31

DOI

17
Tao S X, Xia T C. Lie algebra and Lie super algebra for integrable couplings of C-KdV hierarchy. Chin Phys Lett, 2010, 27: 040202

DOI

18
Tu G Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J Phys A: Math Gen, 1989, 22: 2375-2392

DOI

19
Tu G Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys, 1989, 30: 330-338

DOI

20
Tu G Z. A trace identity and its application to the theory of discrete integrable systems. J Phys A, 1990, 23: 3903-3922

DOI

21
Tu G Z. An extension of a theorem on gradients conserved densities of integrable system. Northeastern Math J, 1990, 6: 26

22
Wadati M, Sanuki H, Konno K. Relationships among inverse method, Bäckland transformation and an infinite number of conservation laws. Progr Theoret Phys, 1975, 53: 419-436

DOI

23
Wang H, Xia T C. Conservation laws for a super G-J hierarchy with self-consistent sources. Commun Nonlinear Sci Numer Simul, 2012, 17: 566-572

DOI

24
Wang H, Xia T C. Conservation laws and self-consistent sources for a super KN hierarchy. Appl Math Comput, 2013, 219: 5458-5464

DOI

25
Wang H, Xia T C. The fractional supertrace identity and its application to the super Ablowitz-Kaup-Newell-Segur hierarchy. J Math Phys, 2013, 54: 043505

DOI

26
Wang H, Xia T C. The fractional supertrace identity and its application to the super Jaulent-Miodek hierarchy. Commun Nonlinear Sci Numer Simul, 2013, 18: 2859-2867

DOI

27
Wang X Z, Dong H H. A Lie superalgebra and corresponding hierarchy of evolution equations. Modern Phys Lett B, 2009, 23: 3387-3396

DOI

28
Xia T C. Two new integrable couplings of the soliton hierarchies with self-consistent sources. Chin Phys B, 2010, 19: 100303

DOI

29
Yang H X, Sun Y P. Hamiltonian and super-Hamiltonian extensions related to Broer-Kaup-Kupershmidt System. Int J Theor Phys, 2010, 49: 349-364

DOI

30
Yu J, He J S, Ma W X, Cheng Y. The Bargmann symmetry constraint and binary nonlinearization of the super Dirac systems. Chin Ann Math Ser B, 2010, 31: 361-372

DOI

31
Zeng Y B. New factorization of the Kaup-Newell hierarchy. Phys D, 1994, 73: 171-188

DOI

32
Zeng Y B. The integrable system associated with higher-order constraint. Acta Math Sinica (Chin Ser), 1995, 38: 642-652 (in Chinese)

33
Zhang Y F. Lie algebras for constructing nonlinear integrable couplings. Commun Theor Phys, 2011, 56(5): 805-812

DOI

34
Zhang Y F, Hon Y C. Some evolution hierarchies derived from self-dual Yang-Mills equations. Commun Theor Phys, 2011, 56(5): 856-872

DOI

35
Zhang Y F, Tam H, Feng B. A generalized Zakharov-Shabat equation with finite-band solutions and a soliton-equation hierarchy with an arbitrary parameter. Chaos Solitons Fractals, 2011, 44(11): 968-976

DOI

36
Zhou R G. Lax representation, r-matrix method, and separation of variables for the Neumann-type restricted flow. J Math Phys, 1998, 39: 2848-2858

DOI

Outlines

/