Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources
Hui WANG , Tiecheng XIA
Front. Math. China ›› 2014, Vol. 9 ›› Issue (6) : 1367 -1379.
Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources
A super Jaulent-Miodek hierarchy and its super Hamiltonian structures are constructed by means of a kind of Lie super algebras and super trace identity. Moreover, the self-consistent sources of the super Jaulent-Miodek hierarchy is presented based on the theory of self-consistent sources. Furthermore, the infinite conservation laws of the super Jaulent-Miodek hierarchy are also obtained. It is worth noting that as even variables are boson variables, odd variables are fermi variables in the spectral problem, the commutator is different from the ordinary one.
Super Jaulent-Miodek hierarchy / self-consistent sources / fermi variables / conservation law
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |