RESEARCH ARTICLE

Exact joint laws associated with spectrally negative Lévy processes and applications to insurance risk theory

  • Chuancun YIN , 1 ,
  • Kam C. YUEN 2
Expand
  • 1. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China
  • 2. Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China

Received date: 12 Nov 2012

Accepted date: 10 Oct 2013

Published date: 29 Oct 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We consider the spectrally negative Lévy processes and determine the joint laws for the quantities such as the first and last passage times over a fixed level, the overshoots and undershoots at first passage, the minimum, the maximum, and the duration of negative values. We apply our results to insurance risk theory to find an explicit expression for the generalized expected discounted penalty function in terms of scale functions. Furthermore, a new expression for the generalized Dickson’s formula is provided.

Cite this article

Chuancun YIN , Kam C. YUEN . Exact joint laws associated with spectrally negative Lévy processes and applications to insurance risk theory[J]. Frontiers of Mathematics in China, 2014 , 9(6) : 1453 -1471 . DOI: 10.1007/s11464-013-0186-5

1
Alili L, Kyprianou A E. Some remarks on first passage of Lévy processes, the American put and pasting principles. Ann Appl Probab, 2005, 15: 2062-2080

DOI

2
Asmussen S. Ruin Probabilities. Singapore: World Scientific, 2000

3
Avram F, Kyprianou A E, Pistorius M R. Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options. Ann Appl Probab, 2004, 14: 215-238

DOI

4
Avram F, Palmowski Z, Pistorius M R. On the optimal dividend problem for a spectrally negative Lévy process. Ann Appl Probab, 2007, 17: 156-180

DOI

5
Bertoin J. Lévy Processes. Cambridge Tracts in Mathematics, Vol 121. Cambridge: Cambridge University Press, 1996

6
Bertoin J. Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval. Ann Appl Probab, 1997, 7: 156-169

DOI

7
Biffis E, Kyprianou A E. A note on scale functions and the time value of ruin for Lévy insurance risk processes. Insurance Math Econom, 2010, 46: 85-91

DOI

8
Biffis E, Morales M. On a generalization of the Gerber-Shiu function to path-dependent penalties. Insurance Math Econom, 2010, 46: 92-97

DOI

9
Bingham N H. Fluctuation theory in continuous time. Adv Appl Probab, 1975, 7: 705-766

DOI

10
Chaumont C, Kyprianou A, Pardo J. Some explicit identities associated with positive self-similar Markov processes. Stoch Proc Appl, 2009, 119(3): 980-1000

DOI

11
Chiu S N, Yin C C. Passage times for a spectrally negative Lévy process with applications to risk theory. Bernoulli, 2005, 11(3): 511-522

DOI

12
Doney R A. Fluctuation Theory for Lévy Processes. Lecture Notes in Mathematics, Vol 1897. Berlin: Springer, 2007

13
Doney R A, Kyprianou A E. Overshoots and undershoots of Lévy processes. Ann Appl Probab, 2006, 16(1): 91-106

DOI

14
Dos Reis A D E. How long is the surplus below zero? Insurance Math Econom, 1993, 12: 23-38

DOI

15
Emery D J. Exit problem for a spectrally positive process. Adv Appl Probab, 1973, 5: 498-520

DOI

16
Erder I, Klüppelberg C. The first passage event for sums of dependent Lévy processes with applications to insurance risk. Ann Appl Probab, 2009, 19(6): 2047-2079

DOI

17
Garrido J, Morales M. On the expected discounted penalty function for Lévy risk processes. North American Actuar J, 2006, 10(4): 196-218

DOI

18
Gerber H U, Shiu E S W. On the time value of ruin. North American Actuar J, 1998, 2(1): 48-78

DOI

19
Hubalek F, Kyprianou A. Old and new examples of scale functions for spectrally negative Lévy processes. In: Dalang R, Dozzi M, Russo F, eds. Sixth Seminar on Stochastic Analysis, Random Fields and Applications. Progress in Probability. Boston: Birkhäuser, 2010, 119-146

20
Huzak M M, Perman M, Šikić H, Vondraček Z. Ruin probabilities and decompositions for general perturbed risk processes. Ann Appl Probab, 2006, 14(3): 1378-1397

21
Kadankov V F, Kadankova T V. On the distribution of duration of stay in an interval of the semi-continuous process with independent increments. Random Oper Stoch Equ, 2004, 12(4): 361-384

DOI

22
Klüppelberg C, Kyprianou A E. On extreme ruinous behaviour of Lévy insurance risk processes. J Appl Probab, 2006, 43(2): 594-598

DOI

23
Klüppelberg C, Kyprianou A E, Maller R A. Ruin probabilities and overshoots for general Lévy insurance risk processes. Ann Appl Probab, 2004, 14(4): 1766-1801

DOI

24
Kyprianou A E. Introductory Lecture Notes on Fluctuations of Lévy Processes with Applications. Berlin: Springer-Verlag, 2006

25
Kyprianou A E, Palmowski Z. A martingale review of some fluctuation theory for spectrally negative Lévy processes. In: Séminaire de Probabilités XXXVIII. Lecture Notes in Math, Vol 1857. Berlin: Springer, 2005, 16-29

26
Kyprianou A E, Palmowski Z. Distributional study of De Finetti’s dividend problem for a general Lévy insurance risk process. J Appl Probab, 2007, 44: 428-443

DOI

27
Kyprianou A E, Pardo J C, Rivero V. Exact and asymptotic n-tuple laws at first and last passage. Ann Appl Probab, 2010, 20(2): 522-564

DOI

28
Kyprianou A E, Rivero V, Song R. Convexity and smoothness of scale functions and De Finetti’s control problem. J Theor Probab, 2010, 23: 547-564

DOI

29
Landriault D, Renaud J, Zhou X W. Occupation times of spectrally negative Lévy processes with applications. Stochastic Process Appl, 2011, 121(11): 2629-2641

DOI

30
Loeffen R. On optimality of the barrier strategy in de Finetti’ dividend problem for spectrally negative Lévy processes. Ann Appl Probab, 2009, 18(5): 1669-1680

DOI

31
Morales M. On the expected discounted penalty function for a perturbed risk process driven by a subordinator. Insurance Math Econom, 2007, 40(2): 293-301

DOI

32
Pistorius M R. A potential-theoretical review of some exit problems of spectrally negative Lévy processes. In: Séminaire de Probabilités XXXVIII. Lecture Notes in Math, Vol 1857. Berlin: Springer, 2005, 30-41

33
Renaud J F, Zhou X. Distribution of the present value of dividend payments in a Lévy risk model. J Appl Probab, 2007, 44(2): 420-427

DOI

34
Rolski T, Schmidli H, Schmidt V, Teugels J. Stochastic Processes for Insurance and Finance. Chichester: Wiley, 1999

DOI

35
Yang H L, Zhang L Z. Spectrally negative Lévy processes with applications in risk theory. Adv Appl Probab, 2001, 33(1): 281-291

DOI

36
Zhou X W. Some fluctuation identities for Lévy processes with jumps of the same sign. J Appl Probab, 2004, 41: 1191-1198

DOI

37
Zhou X W. On a classical risk model with a constant dividend barrier. North American Actuar J, 2005, 9: 95-108

DOI

38
Zhang C S, Wang G J. The joint density function of three characteristics on jumpdiffusion risk process. Insurance Math Econom, 2003, 32: 445-455

DOI

39
Zhang C S, Wu R. Total duration of negative surplus for the compound Poisson process that is perturbed by diffusion. J Appl Probab, 2002, 39: 517-532

DOI

Outlines

/