Frontiers of Mathematics in China >
Omni-Lie superalgebras and Lie 2-superalgebras
Received date: 04 Jan 2013
Accepted date: 22 Nov 2013
Published date: 26 Aug 2014
Copyright
We introduce the notion of omni-Lie superalgebras as a super version of an omni-Lie algebra introduced by Weinstein. This algebraic structure gives a nontrivial example of Leibniz superalgebras and Lie 2-superalgebras. We prove that there is a one-to-one correspondence between Dirac structures of the omni-Lie superalgebra and Lie superalgebra structures on a subspace of a super vector space.
Key words: Lie 2-superalgebra; Leibniz superalgebra; Dirac structure
Tao ZHANG , Zhangju LIU . Omni-Lie superalgebras and Lie 2-superalgebras[J]. Frontiers of Mathematics in China, 2014 , 9(5) : 1195 -1210 . DOI: 10.1007/s11464-014-0347-9
1 |
Albeverio S, Ayupov S A, Omirov B A. On nilpotent and simple Leibniz algebras. Comm Algebra, 2005, 33: 159-172
|
2 |
Baez J, Crans A S. Higher-dimensional algebra VI: Lie 2-Algebras. Theory Appl Categ, 2004, 12: 492-528
|
3 |
Barreiro E, Benayadi S. Quadratic symplectic Lie superalgebras and Lie bisuperalgebras. J Algebra, 2009, 321: 582-608
|
4 |
Bursztyn H, Cavalcanti G, Gualteri M. Reduction of Courant algebroids and generalized complex structures. Adv Math, 2007, 211: 726-765
|
5 |
Chen Z, Liu Z J. Omni-Lie algebroids. J Geom Phys, 2010, 60: 799-808
|
6 |
Chen Z, Liu Z J, Sheng Y. Dirac structures of omni-Lie algebroids. Int J Math, 2011, 22: 1163-1185
|
7 |
Huerta J. Division Algebras, Supersymmetry and Higher Gauge Theory. Ph D Thesis. University of California, 2011, arXiv: 1106.3385
|
8 |
Kac V G. Lie superalgebras. Adv Math, 1977, 26: 8-96
|
9 |
Kinyon K, Weinstein A. Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces. Amer J Math, 2001, 123: 525-550
|
10 |
Lada T, Stasheff J. Introduction to sh Lie algebras for physicists. Int J Theor Phys, 1993, 32: 1087-1103
|
11 |
Liu Z J. Some remarks on Dirac structures and Poisson reductions. In: Poisson Geometry (Warsaw, 1998). Banach Center Publ, Vol 51. Warsaw: Polish Acad Sci, 2000, 165-173
|
12 |
Loday J L. Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign Math, 1993, 39: 269-293
|
13 |
Roytenberg D, Weinstein A. Courant algebroids and strongly homotopy Lie algebras. Lett Math Phys, 1998, 46: 81-93
|
14 |
Scheunert M. The Theory of Lie Superalgebras. Lecture Note in Mathematics 716. Berlin: Springer, 1979
|
15 |
Sheng Y, Liu Z J, Zhu C C. Omni-Lie 2-algebras and their Dirac structures. J Geom Phys, 2011, 61: 560-575
|
16 |
Uchino K. Courant brackets on noncommutative algebras and omni-Lie algebras. Tokyo J Math, 2007, 30: 239-255
|
17 |
Weinstein A. Omni-Lie Algebras. RIMS Kôkyûroku Bessatsu, 2000, 1176: <?Pub Caret1?>95-102
|
/
〈 | 〉 |