RESEARCH ARTICLE

Omni-Lie superalgebras and Lie 2-superalgebras

  • Tao ZHANG ,
  • Zhangju LIU
Expand
  • Department of Mathematics and LMAM, Peking University, Beijing 100871, China

Received date: 04 Jan 2013

Accepted date: 22 Nov 2013

Published date: 26 Aug 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We introduce the notion of omni-Lie superalgebras as a super version of an omni-Lie algebra introduced by Weinstein. This algebraic structure gives a nontrivial example of Leibniz superalgebras and Lie 2-superalgebras. We prove that there is a one-to-one correspondence between Dirac structures of the omni-Lie superalgebra and Lie superalgebra structures on a subspace of a super vector space.

Cite this article

Tao ZHANG , Zhangju LIU . Omni-Lie superalgebras and Lie 2-superalgebras[J]. Frontiers of Mathematics in China, 2014 , 9(5) : 1195 -1210 . DOI: 10.1007/s11464-014-0347-9

1
Albeverio S, Ayupov S A, Omirov B A. On nilpotent and simple Leibniz algebras. Comm Algebra, 2005, 33: 159-172

DOI

2
Baez J, Crans A S. Higher-dimensional algebra VI: Lie 2-Algebras. Theory Appl Categ, 2004, 12: 492-528

3
Barreiro E, Benayadi S. Quadratic symplectic Lie superalgebras and Lie bisuperalgebras. J Algebra, 2009, 321: 582-608

DOI

4
Bursztyn H, Cavalcanti G, Gualteri M. Reduction of Courant algebroids and generalized complex structures. Adv Math, 2007, 211: 726-765

DOI

5
Chen Z, Liu Z J. Omni-Lie algebroids. J Geom Phys, 2010, 60: 799-808

DOI

6
Chen Z, Liu Z J, Sheng Y. Dirac structures of omni-Lie algebroids. Int J Math, 2011, 22: 1163-1185

DOI

7
Huerta J. Division Algebras, Supersymmetry and Higher Gauge Theory. Ph D Thesis. University of California, 2011, arXiv: 1106.3385

8
Kac V G. Lie superalgebras. Adv Math, 1977, 26: 8-96

DOI

9
Kinyon K, Weinstein A. Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces. Amer J Math, 2001, 123: 525-550

DOI

10
Lada T, Stasheff J. Introduction to sh Lie algebras for physicists. Int J Theor Phys, 1993, 32: 1087-1103

DOI

11
Liu Z J. Some remarks on Dirac structures and Poisson reductions. In: Poisson Geometry (Warsaw, 1998). Banach Center Publ, Vol 51. Warsaw: Polish Acad Sci, 2000, 165-173

12
Loday J L. Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign Math, 1993, 39: 269-293

13
Roytenberg D, Weinstein A. Courant algebroids and strongly homotopy Lie algebras. Lett Math Phys, 1998, 46: 81-93

DOI

14
Scheunert M. The Theory of Lie Superalgebras. Lecture Note in Mathematics 716. Berlin: Springer, 1979

15
Sheng Y, Liu Z J, Zhu C C. Omni-Lie 2-algebras and their Dirac structures. J Geom Phys, 2011, 61: 560-575

DOI

16
Uchino K. Courant brackets on noncommutative algebras and omni-Lie algebras. Tokyo J Math, 2007, 30: 239-255

DOI

17
Weinstein A. Omni-Lie Algebras. RIMS Kôkyûroku Bessatsu, 2000, 1176: <?Pub Caret1?>95-102

Outlines

/