Omni-Lie superalgebras and Lie 2-superalgebras

Tao ZHANG , Zhangju LIU

Front. Math. China ›› 2014, Vol. 9 ›› Issue (5) : 1195 -1210.

PDF (140KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (5) : 1195 -1210. DOI: 10.1007/s11464-014-0347-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Omni-Lie superalgebras and Lie 2-superalgebras

Author information +
History +
PDF (140KB)

Abstract

We introduce the notion of omni-Lie superalgebras as a super version of an omni-Lie algebra introduced by Weinstein. This algebraic structure gives a nontrivial example of Leibniz superalgebras and Lie 2-superalgebras. We prove that there is a one-to-one correspondence between Dirac structures of the omni-Lie superalgebra and Lie superalgebra structures on a subspace of a super vector space.

Keywords

Lie 2-superalgebra / Leibniz superalgebra / Dirac structure

Cite this article

Download citation ▾
Tao ZHANG, Zhangju LIU. Omni-Lie superalgebras and Lie 2-superalgebras. Front. Math. China, 2014, 9(5): 1195-1210 DOI:10.1007/s11464-014-0347-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albeverio S, Ayupov S A, Omirov B A. On nilpotent and simple Leibniz algebras. Comm Algebra, 2005, 33: 159-172

[2]

Baez J, Crans A S. Higher-dimensional algebra VI: Lie 2-Algebras. Theory Appl Categ, 2004, 12: 492-528

[3]

Barreiro E, Benayadi S. Quadratic symplectic Lie superalgebras and Lie bisuperalgebras. J Algebra, 2009, 321: 582-608

[4]

Bursztyn H, Cavalcanti G, Gualteri M. Reduction of Courant algebroids and generalized complex structures. Adv Math, 2007, 211: 726-765

[5]

Chen Z, Liu Z J. Omni-Lie algebroids. J Geom Phys, 2010, 60: 799-808

[6]

Chen Z, Liu Z J, Sheng Y. Dirac structures of omni-Lie algebroids. Int J Math, 2011, 22: 1163-1185

[7]

Huerta J. Division Algebras, Supersymmetry and Higher Gauge Theory. Ph D Thesis. University of California, 2011, arXiv: 1106.3385

[8]

Kac V G. Lie superalgebras. Adv Math, 1977, 26: 8-96

[9]

Kinyon K, Weinstein A. Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces. Amer J Math, 2001, 123: 525-550

[10]

Lada T, Stasheff J. Introduction to sh Lie algebras for physicists. Int J Theor Phys, 1993, 32: 1087-1103

[11]

Liu Z J. Some remarks on Dirac structures and Poisson reductions. In: Poisson Geometry (Warsaw, 1998). Banach Center Publ, Vol 51. Warsaw: Polish Acad Sci, 2000, 165-173

[12]

Loday J L. Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign Math, 1993, 39: 269-293

[13]

Roytenberg D, Weinstein A. Courant algebroids and strongly homotopy Lie algebras. Lett Math Phys, 1998, 46: 81-93

[14]

Scheunert M. The Theory of Lie Superalgebras. Lecture Note in Mathematics 716. Berlin: Springer, 1979

[15]

Sheng Y, Liu Z J, Zhu C C. Omni-Lie 2-algebras and their Dirac structures. J Geom Phys, 2011, 61: 560-575

[16]

Uchino K. Courant brackets on noncommutative algebras and omni-Lie algebras. Tokyo J Math, 2007, 30: 239-255

[17]

Weinstein A. Omni-Lie Algebras. RIMS Kôkyûroku Bessatsu, 2000, 1176: <?Pub Caret1?>95-102

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (140KB)

907

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/