Frontiers of Mathematics in China >
Asymptotic properties of supercritical branching processes in random environments
Received date: 31 Mar 2014
Accepted date: 26 May 2014
Published date: 20 Aug 2014
Copyright
We consider a supercritical branching process (Zn) in an independent and identically distributed random environment ξ, and present some recent results on the asymptotic properties of the limit variable W of the natural martingale , the convergence rates of W-Wn(by considering the convergence in law with a suitable norming, the almost sure convergence, the convergence in LP, and the convergence in probability), and limit theorems (such as central limit theorems, moderate and large deviations principles) on (log Zn).
Yingqiu LI , Quansheng LIU , Zhiqiang GAO , Hesong WANG . Asymptotic properties of supercritical branching processes in random environments[J]. Frontiers of Mathematics in China, 2014 , 9(4) : 737 -751 . DOI: 10.1007/s11464-014-0397-z
1 |
Afanasyev V I, Geiger J, Kersting G, Vatutin V A. Criticality for branching processes in random environment. Ann Probab, 2005, 33(2): 645-673
|
2 |
Afanasyev V I, Geiger J, Kersting G, Vatutin V A. Functional limit theorems for strongly subcritical branching processes in random environment. Stochastic Process Appl, 2005, 115(10): 1658-1676
|
3 |
Alsmeyer G, Rösler U. On the existence of ϕ-moments of the limit of a normalized supercritical Galton-Watson process. J Theoret Probab, 2004, 17(4): 905-928
|
4 |
Asmussen S. Convergence rates for branching processes. Ann Probab, 1976, 4: 139-146
|
5 |
Athreya K B. Large deviation rates for branching processes—I. Single type case. Ann Appl Probab, 1994, 4: 779-790
|
6 |
Athreya K B, Karlin S. On branching processes in random environments I. Ann Math Statist, 1971, 42: 1499-1520
|
7 |
Athreya K B, Karlin S. On branching processes in random environments II. Ann Math Statist, 1971, 42: 1843-1858
|
8 |
Athreya K B, Ney P E. Branching Processes. Berlin: Springer, 1972
|
9 |
Bansaye V, Berestycki J. Large deviations for branching processes in random environment. Markov Process Related Fields, 2009, 15: 493-524
|
10 |
Bansaye V, Böinghoff C. Upper large deviations for branching processes in random environment with heavy tails. Preprint, 2010
|
11 |
Bingham N H, Doney R A. Asymptotic properties of supercritical branching processes I: The Galton-Watson processes. Adv Appl Probab, 1974, 6: 711-731
|
12 |
Böinghoff C, Dyakonova E E, Kersting G, Vatutin V A. Branching processes in random environment which extinct at a given moment. Markov Process Related Fields, 2010, 16(2): 329-350
|
13 |
Böinghoff C, Kersting G. Upper large deviations of branching processes in a random environment-Offspring distributions with geometrically bounded tails. Stochastic Process Appl, 2010, 120: 2064-2077
|
14 |
Dembo A, Zeitouni O. Large deviations Techniques and Applications. New York: Springer, 1998
|
15 |
Fearn D H. Galton-Watson processes with generation dependence. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ California, Berkeley, Calif, 1970/1971), Vol IV: Biology and Health, Berkeley, Calif. Berkeley: Univ California Press, 1972, 159-172
|
16 |
Guivarc’h Y, Liu Q. Propriétés asymptotiques des processus de branchement en environnement aléatoire. C R Acad Sci Paris, Ser I, 2001, 332: 339-344
|
17 |
Hambly B. On the limit distribution of a supercritical branching process in a random environment. J Appl Probab, 1992, 29: 499-518
|
18 |
Harris T E. The Theory of Branching Processes. Berlin: Springer, 1963
|
19 |
Heyde C C. A rate of convergence result for the super-critical Galton-Watson process. J Appl Probab, 1970, 7: 451-454
|
20 |
Heyde C C. Some central limit analogues for super-critical Galton-Watson process. J Appl Probab, 1971, 8: 52-59
|
21 |
Heyde C C, Brown B M. An invariance principle and some convergence rate results for branching processes. Z Wahrscheinlichkeitstheorie verw Geb, 1971, 20: 189-192
|
22 |
Huang C, Liu Q. Moments, moderate and large deviations for a branching process in a random environment. Stochastic Process Appl, 2012, 122: 522-545
|
23 |
Huang C, Liu Q. Convergence rates for a supercritical branching process in a random environment. Markov Process Related Fields (to appear)
|
24 |
Huang C, Liu Q. Convergence in LP and its exponential rate for a branching process in a random environment. Preprint, 2014
|
25 |
Iksanov A. On some moments of the limit random variable for a normalized supercritical Galton-Watson process. In: Velle L R, ed. Focus on Probability Theory. New York: Nova Science Publishers, Inc, 2006, 151-158
|
26 |
Jagers P. Galton-Watson processes in varying environments. J Appl Probab, 1974, 11: 174-178
|
27 |
Kozlov M V. On large deviations of branching processes in a random environment: geometric distribution of descendants. Discrete Math Appl, 2006, 16: 155-174
|
28 |
Li Y, Hu Y, Liu Q. Weighted moments for a supercritical branching process in a varying or random environment. Sci China Ser A: Math, 2011, 54(7): 1437-1444
|
29 |
Liang X, Liu Q. Weighted moments for the limit of a normalized supercritical Galton-Watson process. C R Math Acad Sci Paris, 2013, 351(19-20): 769-773
|
30 |
Liang X, Liu Q. Weighted moments of the limit of a branching process in a random environment. Proc Steklov Inst Math, 2013, 282(1): 127-145
|
31 |
Liu Q. The exact Hausdorff dimension of a branching set. Probab Theory Related Fields, 1996, 104: 515-538
|
32 |
Liu Q. Local dimensions of the branching measure on a Galton-Watson tree. Ann Inst Henri Poincaré, Probabilitiés et Statistique, 2001, 37: 195-222
|
33 |
Ney P E, Vidyashanker A N. Harmonic moments and large deviation rates for supercritical branching process. Ann Appl Probab, 2003, 13: 475-489
|
34 |
Smith W L, Wilkinson W E. On branching processes in random environments. Ann Math Statist, 1969, 40: 814-827
|
35 |
Tanny D. Limit theorems for branching processes in a random environment. Ann Probab, 1977, 5: 100-116
|
36 |
Tanny D. A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means. Stochastic Process Appl, 1988, 28: 123-139
|
37 |
Vatutin V A, Liu Q. Critical branching process with two types of particles evolving in asynchronous random environments. Theory Probab Appl, 2013, 57(2): 279-305
|
38 |
Wang H, Gao Z, Liu Q. Central limit theorems for a branching process i<?Pub Caret?>n a random environment. Statist Probab Lett, 2011, 81: 539-547
|
/
〈 | 〉 |