SURVEY ARTICLE

Asymptotic properties of supercritical branching processes in random environments

  • Yingqiu LI 1 ,
  • Quansheng LIU , 1,2 ,
  • Zhiqiang GAO 3 ,
  • Hesong WANG 1
Expand
  • 1. College of Mathematics and Computing Sciences, Changsha University of Science and Technology, Changsha 410004, China
  • 2. Université de Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes, France
  • 3. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received date: 31 Mar 2014

Accepted date: 26 May 2014

Published date: 20 Aug 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We consider a supercritical branching process (Zn) in an independent and identically distributed random environment ξ, and present some recent results on the asymptotic properties of the limit variable W of the natural martingale Wn=Zn/E[Zn|ξ], the convergence rates of W-Wn(by considering the convergence in law with a suitable norming, the almost sure convergence, the convergence in LP, and the convergence in probability), and limit theorems (such as central limit theorems, moderate and large deviations principles) on (log Zn).

Cite this article

Yingqiu LI , Quansheng LIU , Zhiqiang GAO , Hesong WANG . Asymptotic properties of supercritical branching processes in random environments[J]. Frontiers of Mathematics in China, 2014 , 9(4) : 737 -751 . DOI: 10.1007/s11464-014-0397-z

1
Afanasyev V I, Geiger J, Kersting G, Vatutin V A. Criticality for branching processes in random environment. Ann Probab, 2005, 33(2): 645-673

DOI

2
Afanasyev V I, Geiger J, Kersting G, Vatutin V A. Functional limit theorems for strongly subcritical branching processes in random environment. Stochastic Process Appl, 2005, 115(10): 1658-1676

DOI

3
Alsmeyer G, Rösler U. On the existence of ϕ-moments of the limit of a normalized supercritical Galton-Watson process. J Theoret Probab, 2004, 17(4): 905-928

DOI

4
Asmussen S. Convergence rates for branching processes. Ann Probab, 1976, 4: 139-146

DOI

5
Athreya K B. Large deviation rates for branching processes—I. Single type case. Ann Appl Probab, 1994, 4: 779-790

DOI

6
Athreya K B, Karlin S. On branching processes in random environments I. Ann Math Statist, 1971, 42: 1499-1520

DOI

7
Athreya K B, Karlin S. On branching processes in random environments II. Ann Math Statist, 1971, 42: 1843-1858

DOI

8
Athreya K B, Ney P E. Branching Processes. Berlin: Springer, 1972

DOI

9
Bansaye V, Berestycki J. Large deviations for branching processes in random environment. Markov Process Related Fields, 2009, 15: 493-524

10
Bansaye V, Böinghoff C. Upper large deviations for branching processes in random environment with heavy tails. Preprint, 2010

11
Bingham N H, Doney R A. Asymptotic properties of supercritical branching processes I: The Galton-Watson processes. Adv Appl Probab, 1974, 6: 711-731

DOI

12
Böinghoff C, Dyakonova E E, Kersting G, Vatutin V A. Branching processes in random environment which extinct at a given moment. Markov Process Related Fields, 2010, 16(2): 329-350

13
Böinghoff C, Kersting G. Upper large deviations of branching processes in a random environment-Offspring distributions with geometrically bounded tails. Stochastic Process Appl, 2010, 120: 2064-2077

DOI

14
Dembo A, Zeitouni O. Large deviations Techniques and Applications. New York: Springer, 1998

DOI

15
Fearn D H. Galton-Watson processes with generation dependence. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ California, Berkeley, Calif, 1970/1971), Vol IV: Biology and Health, Berkeley, Calif. Berkeley: Univ California Press, 1972, 159-172

16
Guivarc’h Y, Liu Q. Propriétés asymptotiques des processus de branchement en environnement aléatoire. C R Acad Sci Paris, Ser I, 2001, 332: 339-344

17
Hambly B. On the limit distribution of a supercritical branching process in a random environment. J Appl Probab, 1992, 29: 499-518

DOI

18
Harris T E. The Theory of Branching Processes. Berlin: Springer, 1963

DOI

19
Heyde C C. A rate of convergence result for the super-critical Galton-Watson process. J Appl Probab, 1970, 7: 451-454

DOI

20
Heyde C C. Some central limit analogues for super-critical Galton-Watson process. J Appl Probab, 1971, 8: 52-59

DOI

21
Heyde C C, Brown B M. An invariance principle and some convergence rate results for branching processes. Z Wahrscheinlichkeitstheorie verw Geb, 1971, 20: 189-192

22
Huang C, Liu Q. Moments, moderate and large deviations for a branching process in a random environment. Stochastic Process Appl, 2012, 122: 522-545

DOI

23
Huang C, Liu Q. Convergence rates for a supercritical branching process in a random environment. Markov Process Related Fields (to appear)

24
Huang C, Liu Q. Convergence in LP and its exponential rate for a branching process in a random environment. Preprint, 2014

25
Iksanov A. On some moments of the limit random variable for a normalized supercritical Galton-Watson process. In: Velle L R, ed. Focus on Probability Theory. New York: Nova Science Publishers, Inc, 2006, 151-158

26
Jagers P. Galton-Watson processes in varying environments. J Appl Probab, 1974, 11: 174-178

DOI

27
Kozlov M V. On large deviations of branching processes in a random environment: geometric distribution of descendants. Discrete Math Appl, 2006, 16: 155-174

DOI

28
Li Y, Hu Y, Liu Q. Weighted moments for a supercritical branching process in a varying or random environment. Sci China Ser A: Math, 2011, 54(7): 1437-1444

DOI

29
Liang X, Liu Q. Weighted moments for the limit of a normalized supercritical Galton-Watson process. C R Math Acad Sci Paris, 2013, 351(19-20): 769-773

DOI

30
Liang X, Liu Q. Weighted moments of the limit of a branching process in a random environment. Proc Steklov Inst Math, 2013, 282(1): 127-145

DOI

31
Liu Q. The exact Hausdorff dimension of a branching set. Probab Theory Related Fields, 1996, 104: 515-538

DOI

32
Liu Q. Local dimensions of the branching measure on a Galton-Watson tree. Ann Inst Henri Poincaré, Probabilitiés et Statistique, 2001, 37: 195-222

33
Ney P E, Vidyashanker A N. Harmonic moments and large deviation rates for supercritical branching process. Ann Appl Probab, 2003, 13: 475-489

DOI

34
Smith W L, Wilkinson W E. On branching processes in random environments. Ann Math Statist, 1969, 40: 814-827

DOI

35
Tanny D. Limit theorems for branching processes in a random environment. Ann Probab, 1977, 5: 100-116

DOI

36
Tanny D. A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means. Stochastic Process Appl, 1988, 28: 123-139

DOI

37
Vatutin V A, Liu Q. Critical branching process with two types of particles evolving in asynchronous random environments. Theory Probab Appl, 2013, 57(2): 279-305

DOI

38
Wang H, Gao Z, Liu Q. Central limit theorems for a branching process i<?Pub Caret?>n a random environment. Statist Probab Lett, 2011, 81: 539-547

DOI

Outlines

/