Asymptotic properties of supercritical branching processes in random environments

Yingqiu LI, Quansheng LIU, Zhiqiang GAO, Hesong WANG

PDF(155 KB)
PDF(155 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (4) : 737-751. DOI: 10.1007/s11464-014-0397-z
SURVEY ARTICLE
SURVEY ARTICLE

Asymptotic properties of supercritical branching processes in random environments

Author information +
History +

Abstract

We consider a supercritical branching process (Zn) in an independent and identically distributed random environment ξ, and present some recent results on the asymptotic properties of the limit variable W of the natural martingale Wn=Zn/E[Zn|ξ], the convergence rates of W-Wn(by considering the convergence in law with a suitable norming, the almost sure convergence, the convergence in LP, and the convergence in probability), and limit theorems (such as central limit theorems, moderate and large deviations principles) on (log Zn).

Keywords

Branching process / random environment / large deviation / moderate deviation / central limit theorem / moment / weighted moment / convergence rate

Cite this article

Download citation ▾
Yingqiu LI, Quansheng LIU, Zhiqiang GAO, Hesong WANG. Asymptotic properties of supercritical branching processes in random environments. Front. Math. China, 2014, 9(4): 737‒751 https://doi.org/10.1007/s11464-014-0397-z

References

[1]
Afanasyev V I, Geiger J, Kersting G, Vatutin V A. Criticality for branching processes in random environment. Ann Probab, 2005, 33(2): 645-673
CrossRef Google scholar
[2]
Afanasyev V I, Geiger J, Kersting G, Vatutin V A. Functional limit theorems for strongly subcritical branching processes in random environment. Stochastic Process Appl, 2005, 115(10): 1658-1676
CrossRef Google scholar
[3]
Alsmeyer G, Rösler U. On the existence of ϕ-moments of the limit of a normalized supercritical Galton-Watson process. J Theoret Probab, 2004, 17(4): 905-928
CrossRef Google scholar
[4]
Asmussen S. Convergence rates for branching processes. Ann Probab, 1976, 4: 139-146
CrossRef Google scholar
[5]
Athreya K B. Large deviation rates for branching processes—I. Single type case. Ann Appl Probab, 1994, 4: 779-790
CrossRef Google scholar
[6]
Athreya K B, Karlin S. On branching processes in random environments I. Ann Math Statist, 1971, 42: 1499-1520
CrossRef Google scholar
[7]
Athreya K B, Karlin S. On branching processes in random environments II. Ann Math Statist, 1971, 42: 1843-1858
CrossRef Google scholar
[8]
Athreya K B, Ney P E. Branching Processes. Berlin: Springer, 1972
CrossRef Google scholar
[9]
Bansaye V, Berestycki J. Large deviations for branching processes in random environment. Markov Process Related Fields, 2009, 15: 493-524
[10]
Bansaye V, Böinghoff C. Upper large deviations for branching processes in random environment with heavy tails. Preprint, 2010
[11]
Bingham N H, Doney R A. Asymptotic properties of supercritical branching processes I: The Galton-Watson processes. Adv Appl Probab, 1974, 6: 711-731
CrossRef Google scholar
[12]
Böinghoff C, Dyakonova E E, Kersting G, Vatutin V A. Branching processes in random environment which extinct at a given moment. Markov Process Related Fields, 2010, 16(2): 329-350
[13]
Böinghoff C, Kersting G. Upper large deviations of branching processes in a random environment-Offspring distributions with geometrically bounded tails. Stochastic Process Appl, 2010, 120: 2064-2077
CrossRef Google scholar
[14]
Dembo A, Zeitouni O. Large deviations Techniques and Applications. New York: Springer, 1998
CrossRef Google scholar
[15]
Fearn D H. Galton-Watson processes with generation dependence. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ California, Berkeley, Calif, 1970/1971), Vol IV: Biology and Health, Berkeley, Calif. Berkeley: Univ California Press, 1972, 159-172
[16]
Guivarc’h Y, Liu Q. Propriétés asymptotiques des processus de branchement en environnement aléatoire. C R Acad Sci Paris, Ser I, 2001, 332: 339-344
[17]
Hambly B. On the limit distribution of a supercritical branching process in a random environment. J Appl Probab, 1992, 29: 499-518
CrossRef Google scholar
[18]
Harris T E. The Theory of Branching Processes. Berlin: Springer, 1963
CrossRef Google scholar
[19]
Heyde C C. A rate of convergence result for the super-critical Galton-Watson process. J Appl Probab, 1970, 7: 451-454
CrossRef Google scholar
[20]
Heyde C C. Some central limit analogues for super-critical Galton-Watson process. J Appl Probab, 1971, 8: 52-59
CrossRef Google scholar
[21]
Heyde C C, Brown B M. An invariance principle and some convergence rate results for branching processes. Z Wahrscheinlichkeitstheorie verw Geb, 1971, 20: 189-192
[22]
Huang C, Liu Q. Moments, moderate and large deviations for a branching process in a random environment. Stochastic Process Appl, 2012, 122: 522-545
CrossRef Google scholar
[23]
Huang C, Liu Q. Convergence rates for a supercritical branching process in a random environment. Markov Process Related Fields (to appear)
[24]
Huang C, Liu Q. Convergence in LP and its exponential rate for a branching process in a random environment. Preprint, 2014
[25]
Iksanov A. On some moments of the limit random variable for a normalized supercritical Galton-Watson process. In: Velle L R, ed. Focus on Probability Theory. New York: Nova Science Publishers, Inc, 2006, 151-158
[26]
Jagers P. Galton-Watson processes in varying environments. J Appl Probab, 1974, 11: 174-178
CrossRef Google scholar
[27]
Kozlov M V. On large deviations of branching processes in a random environment: geometric distribution of descendants. Discrete Math Appl, 2006, 16: 155-174
CrossRef Google scholar
[28]
Li Y, Hu Y, Liu Q. Weighted moments for a supercritical branching process in a varying or random environment. Sci China Ser A: Math, 2011, 54(7): 1437-1444
CrossRef Google scholar
[29]
Liang X, Liu Q. Weighted moments for the limit of a normalized supercritical Galton-Watson process. C R Math Acad Sci Paris, 2013, 351(19-20): 769-773
CrossRef Google scholar
[30]
Liang X, Liu Q. Weighted moments of the limit of a branching process in a random environment. Proc Steklov Inst Math, 2013, 282(1): 127-145
CrossRef Google scholar
[31]
Liu Q. The exact Hausdorff dimension of a branching set. Probab Theory Related Fields, 1996, 104: 515-538
CrossRef Google scholar
[32]
Liu Q. Local dimensions of the branching measure on a Galton-Watson tree. Ann Inst Henri Poincaré, Probabilitiés et Statistique, 2001, 37: 195-222
[33]
Ney P E, Vidyashanker A N. Harmonic moments and large deviation rates for supercritical branching process. Ann Appl Probab, 2003, 13: 475-489
CrossRef Google scholar
[34]
Smith W L, Wilkinson W E. On branching processes in random environments. Ann Math Statist, 1969, 40: 814-827
CrossRef Google scholar
[35]
Tanny D. Limit theorems for branching processes in a random environment. Ann Probab, 1977, 5: 100-116
CrossRef Google scholar
[36]
Tanny D. A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means. Stochastic Process Appl, 1988, 28: 123-139
CrossRef Google scholar
[37]
Vatutin V A, Liu Q. Critical branching process with two types of particles evolving in asynchronous random environments. Theory Probab Appl, 2013, 57(2): 279-305
CrossRef Google scholar
[38]
Wang H, Gao Z, Liu Q. Central limit theorems for a branching process i<?Pub Caret?>n a random environment. Statist Probab Lett, 2011, 81: 539-547
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(155 KB)

Accesses

Citations

Detail

Sections
Recommended

/