RESEARCH ARTICLE

Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations

  • Miao WANG 1 ,
  • Jiang-Lun WU , 1,2
Expand
  • 1. Department of Mathematics, Swansea University, Swansea SA2 8PP, UK
  • 2. School of Mathematics, Northwest University, Xi’an 710127, China

Received date: 21 Oct 2013

Accepted date: 28 Jan 2014

Published date: 24 Jun 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Based on a recent result on linking stochastic differential equations on d to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional approximations to characterize the path-independence of the density process of Girsanov transformation for the infinite-dimensional stochastic evolution equations. Our result provides a link of infinite-dimensional semi-linear stochastic differential equations to infinite-dimensional Burgers-KPZ type nonlinear parabolic partial differential equations. As an application, this characterization result is applied to stochastic heat equation in one space dimension over the unit interval.

Cite this article

Miao WANG , Jiang-Lun WU . Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations[J]. Frontiers of Mathematics in China, 2014 , 9(3) : 601 -622 . DOI: 10.1007/s11464-014-0364-8

1
AlbeverioS, MolchanovS A, SurgailisD. Stratified structure of the Universe and Burgers’ equation: A probabilistic approach. Probab Theory Related Fields, 1994, 100: 457-484

DOI

2
BlackF, ScholesM. The pricing of options and corporate liabilities. J Political Economy, 1973, 81(3): 637-654

DOI

3
BurgersJ M. The Nonlinear Diffusion Equations. Boston: Reidel, 1974

DOI

4
ChowP L. Stochastic Partial Differential Equations. Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series. Boca Raton: Chapman and Hall/CRC, 2007

5
CoxJ C, LelandH E. On dynamic investment strategies. In: Proceedings of the Seminar on the Analysis of Security Prices. Centre for Research in Security Prices, University of Chicago, 1982

6
CrandallM G, IshiiH, LionsP L. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc (N S), 1992, 27(1): 1-67

DOI

7
Da PratoG, ZabczykJ. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press, 1992

DOI

8
Da PratoG, ZabczykJ. Ergodicity for Infinite-dimensional Systems. London Mathematical Society Lecture Note Series, Vol 229. Cambridge: Cambridge University Press, 1996

DOI

9
DafermosC M. Hyperbolic Conservation Laws in Continuum Physics. 2nd ed. Heidelberg: Springer-Verlag, 2005

10
ElworthyD K, TrumanA. The diffusion equation and classical mechanics: An elementary formula. In: AlbeverioS, et al, eds. Stochastic Processes in Quantum Physics. Lecture Notes in Physics, Vol 173. Berlin: Springer-Verlag, 1982, 136-146

DOI

11
FlemingW H, SonerH M. Controlled Markov Processes and Viscosity Solutions. 2nd ed. Stochastic Modelling and Applied Probability, Vol 25. New York: Springer, 2006

12
FreidlinM I. Functional Integration and Partial Differential Equations. Ann Math Stud, Vol 109. Princeton: Princeton University Press, 1985

13
GongF Z, MaZ M. Invariance of Malliavin fields on it’s Wiener space and on abstract Wiener space. J Funct Anal, 1996, 138(2): 449-476

DOI

14
HandaK. On a stochastic PDE related to Burgers equation with noise. In: FunakiT, WoyczynskiW A, eds. Hydrodynamic Limit and Burgers’ Turbulence. Berlin, Heidelberg, New York: Springer-Verlag, 1996

15
HodgesS, CarverhillA. Quasi mean reversion in an efficient stock market: the characterisation of economic equilibria which support Black-Scholes Option pricing. Economic J, 1993, 103: 395-405

DOI

16
HodgesS, LiaoC H. Equilibrium Price Processes, Mean Reversion and Consumption Smoothing. Working paper, 2004

17
IkedaN, WatanabeS. Stochastic Differential Equations and Diffusion Processes. 2nd ed. Amsterdam and Tokyo: North-Holland and Kodansha Ltd, 1989

18
KardarM P, ParisiG, ZhangY-C. Dynamic scaling of growing interfaces. Phys Rev Lett, 1986, 56: 889-892

DOI

19
KrugJ, SpohnH. Kinetic roughening of growing surfaces. In: GodrécheC, ed. Solids Far from Equilibrium: Growth Morphology and Defects. Cambridge: Cambridge University Press, 1991, 412-525

20
MajdaA. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Math Sci, No 53. New York: Springer-Verlag, 1984

DOI

21
MajdaA, TimofeyevI. Remarkable statistical behavior for truncated Burgers-Hopf dynamics. Proc Natl Acad Sci USA, 2000, 97: 12413-12417

DOI

22
MalliavinP, ThalmaierA. Stochastic Calculus of Variations in Mathematical Finance. Springer Finance. Berlin: Springer-Verlag, 2006

23
ØksendalB. Stochastic Differential Equations. An Introduction with Applications. 6th ed. Universitext. Berlin: Springer-Verlag, 2003

24
PrévôtC, RöcknerM. A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, Vol 1905. Berlin: Springer, 2007

25
SmollerJ. Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1994

DOI

26
SpohnH. Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Berlin-Heidelberg-New York: Springer-Verlag, 1991

DOI

27
SteinE M, SteinJ C. Stock price distributions with stochastic volatility: an analytic approach. Rev Financial Studies, 1991, 4(4): 727-752

DOI

28
StroockD W, VaradhanS R S. Multidimensional Diffusion Processes. Grundlehren der mathematischen Wissenschaften, Vol 233. Berlin: Springer-Verlag, 1979

29
TrumanA. Classical mechanics, the diffusion (heat) equation, and the Schrödinger equation. J Math Phys, 1977, 18: 2308-2315

DOI

30
TrumanA, WangF-Y, WuJ-L, YangW. A link of stochastic differential equations to nonlinear parabolic equations. Sci China Math, 2012, 55(10): 1971-1976

DOI

31
TrumanA, ZhaoH Z. The stochastic Hamilton Jacobi equation, stochastic heat equation and Schrödinger equation. In: DaviesI M, TrumanA, ElworthyD K, eds. Stochastic Analysis and Applications. Singapore: World Scientific, 1996, 441-464

32
TrumanA, ZhaoH Z. On stochastic diffusion equations and stochastic Burgers equations. J Math. Phys, 1996, 37: 283-307

DOI

33
TrumanA, ZhaoH Z. Stochastic Burgers equations and their semi-classical expansions. Comm Math Phys, 1998, 194: 231-248

DOI

34
WalshJ B. An Introduction to Stochastic Partial Differential Equations. In: CarmonaR, KestenH, WalshJ B, et al, eds. École d’Été de Probabilitiés de Sanit Flour, XIV-1984. Lecture Notes in Mathematics, Vol 1180. Berlin: Springer-Verlag, 1986, 265-439

DOI

35
WangF-Y. Harnack Inequalities for Stochastic Partial Differential Equations. Springer Briefs in Mathematics. New York: Springer, 2013

DOI

36
WoyczynskiW A. Burgers-KPZ Turbulence. Göttingen lectures.Lecture Notes in Mathematics, Vol 1700. Berlin: Springer-Verlag, 1998

37
WuJ-L, YangW. On stochastic differential equations and a generalised Burgers equation. In: ZhangT, ZhouX Y, eds. Stochastic Analysis and Applications to Finance -Festschrift in Honor of Professor Jia-An Yan. Interdisciplinary Mathematical Sciences, Vol 13. Hackensck: World Scientific Publ, 2012, 425-435

38
YongJ, ZhouX Y. Stochastic Controls: Hamiltonian Systems and HJB Equations. Applications of Mathematics-Stochastic Modelling and Applied Probability, Vol 43. New York: Springer-Verlag, 1999

DOI

Outlines

/