Frontiers of Mathematics in China >
Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations
Received date: 21 Oct 2013
Accepted date: 28 Jan 2014
Published date: 24 Jun 2014
Copyright
Based on a recent result on linking stochastic differential equations on to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional approximations to characterize the path-independence of the density process of Girsanov transformation for the infinite-dimensional stochastic evolution equations. Our result provides a link of infinite-dimensional semi-linear stochastic differential equations to infinite-dimensional Burgers-KPZ type nonlinear parabolic partial differential equations. As an application, this characterization result is applied to stochastic heat equation in one space dimension over the unit interval.
Miao WANG , Jiang-Lun WU . Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations[J]. Frontiers of Mathematics in China, 2014 , 9(3) : 601 -622 . DOI: 10.1007/s11464-014-0364-8
1 |
AlbeverioS, MolchanovS A, SurgailisD. Stratified structure of the Universe and Burgers’ equation: A probabilistic approach. Probab Theory Related Fields, 1994, 100: 457-484
|
2 |
BlackF, ScholesM. The pricing of options and corporate liabilities. J Political Economy, 1973, 81(3): 637-654
|
3 |
BurgersJ M. The Nonlinear Diffusion Equations. Boston: Reidel, 1974
|
4 |
ChowP L. Stochastic Partial Differential Equations. Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series. Boca Raton: Chapman and Hall/CRC, 2007
|
5 |
CoxJ C, LelandH E. On dynamic investment strategies. In: Proceedings of the Seminar on the Analysis of Security Prices. Centre for Research in Security Prices, University of Chicago, 1982
|
6 |
CrandallM G, IshiiH, LionsP L. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc (N S), 1992, 27(1): 1-67
|
7 |
Da PratoG, ZabczykJ. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press, 1992
|
8 |
Da PratoG, ZabczykJ. Ergodicity for Infinite-dimensional Systems. London Mathematical Society Lecture Note Series, Vol 229. Cambridge: Cambridge University Press, 1996
|
9 |
DafermosC M. Hyperbolic Conservation Laws in Continuum Physics. 2nd ed. Heidelberg: Springer-Verlag, 2005
|
10 |
ElworthyD K, TrumanA. The diffusion equation and classical mechanics: An elementary formula. In: AlbeverioS, et al, eds. Stochastic Processes in Quantum Physics. Lecture Notes in Physics, Vol 173. Berlin: Springer-Verlag, 1982, 136-146
|
11 |
FlemingW H, SonerH M. Controlled Markov Processes and Viscosity Solutions. 2nd ed. Stochastic Modelling and Applied Probability, Vol 25. New York: Springer, 2006
|
12 |
FreidlinM I. Functional Integration and Partial Differential Equations. Ann Math Stud, Vol 109. Princeton: Princeton University Press, 1985
|
13 |
GongF Z, MaZ M. Invariance of Malliavin fields on it’s Wiener space and on abstract Wiener space. J Funct Anal, 1996, 138(2): 449-476
|
14 |
HandaK. On a stochastic PDE related to Burgers equation with noise. In: FunakiT, WoyczynskiW A, eds. Hydrodynamic Limit and Burgers’ Turbulence. Berlin, Heidelberg, New York: Springer-Verlag, 1996
|
15 |
HodgesS, CarverhillA. Quasi mean reversion in an efficient stock market: the characterisation of economic equilibria which support Black-Scholes Option pricing. Economic J, 1993, 103: 395-405
|
16 |
HodgesS, LiaoC H. Equilibrium Price Processes, Mean Reversion and Consumption Smoothing. Working paper, 2004
|
17 |
IkedaN, WatanabeS. Stochastic Differential Equations and Diffusion Processes. 2nd ed. Amsterdam and Tokyo: North-Holland and Kodansha Ltd, 1989
|
18 |
KardarM P, ParisiG, ZhangY-C. Dynamic scaling of growing interfaces. Phys Rev Lett, 1986, 56: 889-892
|
19 |
KrugJ, SpohnH. Kinetic roughening of growing surfaces. In: GodrécheC, ed. Solids Far from Equilibrium: Growth Morphology and Defects. Cambridge: Cambridge University Press, 1991, 412-525
|
20 |
MajdaA. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Math Sci, No 53. New York: Springer-Verlag, 1984
|
21 |
MajdaA, TimofeyevI. Remarkable statistical behavior for truncated Burgers-Hopf dynamics. Proc Natl Acad Sci USA, 2000, 97: 12413-12417
|
22 |
MalliavinP, ThalmaierA. Stochastic Calculus of Variations in Mathematical Finance. Springer Finance. Berlin: Springer-Verlag, 2006
|
23 |
ØksendalB. Stochastic Differential Equations. An Introduction with Applications. 6th ed. Universitext. Berlin: Springer-Verlag, 2003
|
24 |
PrévôtC, RöcknerM. A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, Vol 1905. Berlin: Springer, 2007
|
25 |
SmollerJ. Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1994
|
26 |
SpohnH. Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Berlin-Heidelberg-New York: Springer-Verlag, 1991
|
27 |
SteinE M, SteinJ C. Stock price distributions with stochastic volatility: an analytic approach. Rev Financial Studies, 1991, 4(4): 727-752
|
28 |
StroockD W, VaradhanS R S. Multidimensional Diffusion Processes. Grundlehren der mathematischen Wissenschaften, Vol 233. Berlin: Springer-Verlag, 1979
|
29 |
TrumanA. Classical mechanics, the diffusion (heat) equation, and the Schrödinger equation. J Math Phys, 1977, 18: 2308-2315
|
30 |
TrumanA, WangF-Y, WuJ-L, YangW. A link of stochastic differential equations to nonlinear parabolic equations. Sci China Math, 2012, 55(10): 1971-1976
|
31 |
TrumanA, ZhaoH Z. The stochastic Hamilton Jacobi equation, stochastic heat equation and Schrödinger equation. In: DaviesI M, TrumanA, ElworthyD K, eds. Stochastic Analysis and Applications. Singapore: World Scientific, 1996, 441-464
|
32 |
TrumanA, ZhaoH Z. On stochastic diffusion equations and stochastic Burgers equations. J Math. Phys, 1996, 37: 283-307
|
33 |
TrumanA, ZhaoH Z. Stochastic Burgers equations and their semi-classical expansions. Comm Math Phys, 1998, 194: 231-248
|
34 |
WalshJ B. An Introduction to Stochastic Partial Differential Equations. In: CarmonaR, KestenH, WalshJ B, et al, eds. École d’Été de Probabilitiés de Sanit Flour, XIV-1984. Lecture Notes in Mathematics, Vol 1180. Berlin: Springer-Verlag, 1986, 265-439
|
35 |
WangF-Y. Harnack Inequalities for Stochastic Partial Differential Equations. Springer Briefs in Mathematics. New York: Springer, 2013
|
36 |
WoyczynskiW A. Burgers-KPZ Turbulence. Göttingen lectures.Lecture Notes in Mathematics, Vol 1700. Berlin: Springer-Verlag, 1998
|
37 |
WuJ-L, YangW. On stochastic differential equations and a generalised Burgers equation. In: ZhangT, ZhouX Y, eds. Stochastic Analysis and Applications to Finance -Festschrift in Honor of Professor Jia-An Yan. Interdisciplinary Mathematical Sciences, Vol 13. Hackensck: World Scientific Publ, 2012, 425-435
|
38 |
YongJ, ZhouX Y. Stochastic Controls: Hamiltonian Systems and HJB Equations. Applications of Mathematics-Stochastic Modelling and Applied Probability, Vol 43. New York: Springer-Verlag, 1999
|
/
〈 | 〉 |