Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations

Miao WANG , Jiang-Lun WU

Front. Math. China ›› 2014, Vol. 9 ›› Issue (3) : 601 -622.

PDF (197KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (3) : 601 -622. DOI: 10.1007/s11464-014-0364-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations

Author information +
History +
PDF (197KB)

Abstract

Based on a recent result on linking stochastic differential equations on d to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional approximations to characterize the path-independence of the density process of Girsanov transformation for the infinite-dimensional stochastic evolution equations. Our result provides a link of infinite-dimensional semi-linear stochastic differential equations to infinite-dimensional Burgers-KPZ type nonlinear parabolic partial differential equations. As an application, this characterization result is applied to stochastic heat equation in one space dimension over the unit interval.

Keywords

Characterization theorem / Burgers-KPZ type nonlinear equations in infinite dimensions / infinite-dimensional semi-linear stochastic differential equations / Galerkin approximation / Girsanov transformation / stochastic heat equation / path-independence / Fréchet differentiation

Cite this article

Download citation ▾
Miao WANG, Jiang-Lun WU. Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations. Front. Math. China, 2014, 9(3): 601-622 DOI:10.1007/s11464-014-0364-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlbeverioS, MolchanovS A, SurgailisD. Stratified structure of the Universe and Burgers’ equation: A probabilistic approach. Probab Theory Related Fields, 1994, 100: 457-484

[2]

BlackF, ScholesM. The pricing of options and corporate liabilities. J Political Economy, 1973, 81(3): 637-654

[3]

BurgersJ M. The Nonlinear Diffusion Equations. Boston: Reidel, 1974

[4]

ChowP L. Stochastic Partial Differential Equations. Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series. Boca Raton: Chapman and Hall/CRC, 2007

[5]

CoxJ C, LelandH E. On dynamic investment strategies. In: Proceedings of the Seminar on the Analysis of Security Prices. Centre for Research in Security Prices, University of Chicago, 1982

[6]

CrandallM G, IshiiH, LionsP L. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc (N S), 1992, 27(1): 1-67

[7]

Da PratoG, ZabczykJ. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press, 1992

[8]

Da PratoG, ZabczykJ. Ergodicity for Infinite-dimensional Systems. London Mathematical Society Lecture Note Series, Vol 229. Cambridge: Cambridge University Press, 1996

[9]

DafermosC M. Hyperbolic Conservation Laws in Continuum Physics. 2nd ed. Heidelberg: Springer-Verlag, 2005

[10]

ElworthyD K, TrumanA. The diffusion equation and classical mechanics: An elementary formula. In: AlbeverioS, et al, eds. Stochastic Processes in Quantum Physics. Lecture Notes in Physics, Vol 173. Berlin: Springer-Verlag, 1982, 136-146

[11]

FlemingW H, SonerH M. Controlled Markov Processes and Viscosity Solutions. 2nd ed. Stochastic Modelling and Applied Probability, Vol 25. New York: Springer, 2006

[12]

FreidlinM I. Functional Integration and Partial Differential Equations. Ann Math Stud, Vol 109. Princeton: Princeton University Press, 1985

[13]

GongF Z, MaZ M. Invariance of Malliavin fields on it’s Wiener space and on abstract Wiener space. J Funct Anal, 1996, 138(2): 449-476

[14]

HandaK. On a stochastic PDE related to Burgers equation with noise. In: FunakiT, WoyczynskiW A, eds. Hydrodynamic Limit and Burgers’ Turbulence. Berlin, Heidelberg, New York: Springer-Verlag, 1996

[15]

HodgesS, CarverhillA. Quasi mean reversion in an efficient stock market: the characterisation of economic equilibria which support Black-Scholes Option pricing. Economic J, 1993, 103: 395-405

[16]

HodgesS, LiaoC H. Equilibrium Price Processes, Mean Reversion and Consumption Smoothing. Working paper, 2004

[17]

IkedaN, WatanabeS. Stochastic Differential Equations and Diffusion Processes. 2nd ed. Amsterdam and Tokyo: North-Holland and Kodansha Ltd, 1989

[18]

KardarM P, ParisiG, ZhangY-C. Dynamic scaling of growing interfaces. Phys Rev Lett, 1986, 56: 889-892

[19]

KrugJ, SpohnH. Kinetic roughening of growing surfaces. In: GodrécheC, ed. Solids Far from Equilibrium: Growth Morphology and Defects. Cambridge: Cambridge University Press, 1991, 412-525

[20]

MajdaA. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Math Sci, No 53. New York: Springer-Verlag, 1984

[21]

MajdaA, TimofeyevI. Remarkable statistical behavior for truncated Burgers-Hopf dynamics. Proc Natl Acad Sci USA, 2000, 97: 12413-12417

[22]

MalliavinP, ThalmaierA. Stochastic Calculus of Variations in Mathematical Finance. Springer Finance. Berlin: Springer-Verlag, 2006

[23]

ØksendalB. Stochastic Differential Equations. An Introduction with Applications. 6th ed. Universitext. Berlin: Springer-Verlag, 2003

[24]

PrévôtC, RöcknerM. A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, Vol 1905. Berlin: Springer, 2007

[25]

SmollerJ. Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1994

[26]

SpohnH. Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Berlin-Heidelberg-New York: Springer-Verlag, 1991

[27]

SteinE M, SteinJ C. Stock price distributions with stochastic volatility: an analytic approach. Rev Financial Studies, 1991, 4(4): 727-752

[28]

StroockD W, VaradhanS R S. Multidimensional Diffusion Processes. Grundlehren der mathematischen Wissenschaften, Vol 233. Berlin: Springer-Verlag, 1979

[29]

TrumanA. Classical mechanics, the diffusion (heat) equation, and the Schrödinger equation. J Math Phys, 1977, 18: 2308-2315

[30]

TrumanA, WangF-Y, WuJ-L, YangW. A link of stochastic differential equations to nonlinear parabolic equations. Sci China Math, 2012, 55(10): 1971-1976

[31]

TrumanA, ZhaoH Z. The stochastic Hamilton Jacobi equation, stochastic heat equation and Schrödinger equation. In: DaviesI M, TrumanA, ElworthyD K, eds. Stochastic Analysis and Applications. Singapore: World Scientific, 1996, 441-464

[32]

TrumanA, ZhaoH Z. On stochastic diffusion equations and stochastic Burgers equations. J Math. Phys, 1996, 37: 283-307

[33]

TrumanA, ZhaoH Z. Stochastic Burgers equations and their semi-classical expansions. Comm Math Phys, 1998, 194: 231-248

[34]

WalshJ B. An Introduction to Stochastic Partial Differential Equations. In: CarmonaR, KestenH, WalshJ B, et al, eds. École d’Été de Probabilitiés de Sanit Flour, XIV-1984. Lecture Notes in Mathematics, Vol 1180. Berlin: Springer-Verlag, 1986, 265-439

[35]

WangF-Y. Harnack Inequalities for Stochastic Partial Differential Equations. Springer Briefs in Mathematics. New York: Springer, 2013

[36]

WoyczynskiW A. Burgers-KPZ Turbulence. Göttingen lectures.Lecture Notes in Mathematics, Vol 1700. Berlin: Springer-Verlag, 1998

[37]

WuJ-L, YangW. On stochastic differential equations and a generalised Burgers equation. In: ZhangT, ZhouX Y, eds. Stochastic Analysis and Applications to Finance -Festschrift in Honor of Professor Jia-An Yan. Interdisciplinary Mathematical Sciences, Vol 13. Hackensck: World Scientific Publ, 2012, 425-435

[38]

YongJ, ZhouX Y. Stochastic Controls: Hamiltonian Systems and HJB Equations. Applications of Mathematics-Stochastic Modelling and Applied Probability, Vol 43. New York: Springer-Verlag, 1999

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (197KB)

930

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/