RESEARCH ARTICLE

Super O-operators of Jordan superalgebras and super Jordan Yang-Baxter equations

  • Junna NI 1 ,
  • Yan WANG , 2 ,
  • Dongping HOU 3
Expand
  • 1. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
  • 2. Department of Mathematics, Tianjin University, Tianjin 300072, China
  • 3. Department of Mathematics, Yunnan Normal University, Kunming 650092, China

Received date: 12 Dec 2012

Accepted date: 27 Sep 2013

Published date: 24 Jun 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, the super O-operators of Jordan superalgebras are introduced and the solutions of super Jordan Yang-Baxter equation are discussed by super O-operators. Then pre-Jordan superalgebras are studied as the algebraic structure behind the super O-operators. Moreover, the relations among Jordan superalgebras, pre-Jordan superalgebras, and dendriform superalgebras are established.

Cite this article

Junna NI , Yan WANG , Dongping HOU . Super O-operators of Jordan superalgebras and super Jordan Yang-Baxter equations[J]. Frontiers of Mathematics in China, 2014 , 9(3) : 585 -599 . DOI: 10.1007/s11464-014-0339-9

1
AlbertA A. On Jordan algebras of linear transformations. Trans Amer Math Soc, 1946, 59: 524-555

DOI

2
AlbertA A. A structure theory for Jordan algebras. Ann Math, 1946, 48: 546-567

DOI

3
IordanescuR. Jordan Structures in Geometry and Physics. Bucarest: Editura Acad Romane, 2003

4
ChuC H. Jordan triple systems and Riemannian symmetric spaces. Adv Math, 2008, 219: 2029-2057

DOI

5
ChuC H. Jordan Structures in Geometry and Analysis. Cambridge: Cambridge University Press, 2012

6
HouD P, NiX, BaiC M. Pre-Jordan algebras. Math Scand, 2013, 112(1): 19-48

7
JacobsonN. Lie and Jordan triple systems. Amer J Math, 1949, 71: 149-170

DOI

8
JordanP, von NeumannJ, WingerE P. On an algebraic generalization of the quantum mechanical formalism. Ann Math, 1934, 35: 29-64

DOI

9
KacV. Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Comm Algebra, 1977, 5: 1375-1400

DOI

10
KantorI L. Connection between Poisson brackets and Jordan and Lie superalgebras. In: Lie Theory, Differential Equations and Representation Theory (Montreal, PQ, 1989). 1990, 213-225

11
KantorI L. Jordan and Lie superalgebras defined by Poisson brackets. In: Algebra and Analysis (Tomsk), 1989, 51-80; Amer Math Soc Transl, Ser 2, 1992, 151: 55-80

12
KaplanskyI. Superalgebras. Pacific J Math, 1980, 86: 93-98

DOI

13
KaupW, ZaitsevD. On symmetric Cauchy-Riemann manifolds. Adv Math, 2000, 149: 145-181

DOI

14
KoecherM. Imbedding of Jordan algebras into Lie algebras I. Amer J Math, 1967, 89: 787-816

DOI

15
RacineM, ZelmanovE. Simple Jordan superalgebras with semisimple even part. J Algebra, 2003, 270(2): 374-444

DOI

16
UpmeierH. Jordan algebras and harmonic analysis on symmetric spaces. Amer J Math, 1986, 108: 1-25

DOI

17
ZhelyabinV N. Jordan bialgebras and their relation to Lie bialgebras. Algebra Logic, 1997, 36: 1-15

DOI

18
ZhelyabinV N. On a class of Jordan D-bialgebras. St Petersburg Math J, 2000, 11: 589-610

Outlines

/