Super O-operators of Jordan superalgebras and super Jordan Yang-Baxter equations

Junna NI, Yan WANG, Dongping HOU

PDF(138 KB)
PDF(138 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (3) : 585-599. DOI: 10.1007/s11464-014-0339-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Super O-operators of Jordan superalgebras and super Jordan Yang-Baxter equations

Author information +
History +

Abstract

In this paper, the super O-operators of Jordan superalgebras are introduced and the solutions of super Jordan Yang-Baxter equation are discussed by super O-operators. Then pre-Jordan superalgebras are studied as the algebraic structure behind the super O-operators. Moreover, the relations among Jordan superalgebras, pre-Jordan superalgebras, and dendriform superalgebras are established.

Keywords

Super O-operator / dendriform superalgebra / pre-Jordan superalgebra

Cite this article

Download citation ▾
Junna NI, Yan WANG, Dongping HOU. Super O-operators of Jordan superalgebras and super Jordan Yang-Baxter equations. Front. Math. China, 2014, 9(3): 585‒599 https://doi.org/10.1007/s11464-014-0339-9

References

[1]
AlbertA A. On Jordan algebras of linear transformations. Trans Amer Math Soc, 1946, 59: 524-555
CrossRef Google scholar
[2]
AlbertA A. A structure theory for Jordan algebras. Ann Math, 1946, 48: 546-567
CrossRef Google scholar
[3]
IordanescuR. Jordan Structures in Geometry and Physics. Bucarest: Editura Acad Romane, 2003
[4]
ChuC H. Jordan triple systems and Riemannian symmetric spaces. Adv Math, 2008, 219: 2029-2057
CrossRef Google scholar
[5]
ChuC H. Jordan Structures in Geometry and Analysis. Cambridge: Cambridge University Press, 2012
[6]
HouD P, NiX, BaiC M. Pre-Jordan algebras. Math Scand, 2013, 112(1): 19-48
[7]
JacobsonN. Lie and Jordan triple systems. Amer J Math, 1949, 71: 149-170
CrossRef Google scholar
[8]
JordanP, von NeumannJ, WingerE P. On an algebraic generalization of the quantum mechanical formalism. Ann Math, 1934, 35: 29-64
CrossRef Google scholar
[9]
KacV. Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Comm Algebra, 1977, 5: 1375-1400
CrossRef Google scholar
[10]
KantorI L. Connection between Poisson brackets and Jordan and Lie superalgebras. In: Lie Theory, Differential Equations and Representation Theory (Montreal, PQ, 1989). 1990, 213-225
[11]
KantorI L. Jordan and Lie superalgebras defined by Poisson brackets. In: Algebra and Analysis (Tomsk), 1989, 51-80; Amer Math Soc Transl, Ser 2, 1992, 151: 55-80
[12]
KaplanskyI. Superalgebras. Pacific J Math, 1980, 86: 93-98
CrossRef Google scholar
[13]
KaupW, ZaitsevD. On symmetric Cauchy-Riemann manifolds. Adv Math, 2000, 149: 145-181
CrossRef Google scholar
[14]
KoecherM. Imbedding of Jordan algebras into Lie algebras I. Amer J Math, 1967, 89: 787-816
CrossRef Google scholar
[15]
RacineM, ZelmanovE. Simple Jordan superalgebras with semisimple even part. J Algebra, 2003, 270(2): 374-444
CrossRef Google scholar
[16]
UpmeierH. Jordan algebras and harmonic analysis on symmetric spaces. Amer J Math, 1986, 108: 1-25
CrossRef Google scholar
[17]
ZhelyabinV N. Jordan bialgebras and their relation to Lie bialgebras. Algebra Logic, 1997, 36: 1-15
CrossRef Google scholar
[18]
ZhelyabinV N. On a class of Jordan D-bialgebras. St Petersburg Math J, 2000, 11: 589-610

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(138 KB)

Accesses

Citations

Detail

Sections
Recommended

/