Frontiers of Mathematics in China >
New point view of spectral gap in functional spaces for birth-death processes
Received date: 17 Aug 2012
Accepted date: 13 Dec 2012
Published date: 24 Jun 2014
Copyright
Constructing some proper functional spaces, we obtain the corresponding norm for the operator (-)-1, and then, via spectral theory, we revisit two variational formulas of the spectral gap, given by M. F. Chen [Front. Math. China, 2010, 5(3): 379-515], for transient birth-death processes.
Yutao MA , Yonghua MAO . New point view of spectral gap in functional spaces for birth-death processes[J]. Frontiers of Mathematics in China, 2014 , 9(3) : 523 -535 . DOI: 10.1007/s11464-013-0276-z
1 |
ChenM-F. Estimation of spectral gap for Markov chains. Acta Math Sin (New Ser), 1996, 12(4): 337-360
|
2 |
ChenM-F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci Sin, Ser A, 1999, 42(8): 805-815
|
3 |
ChenM-F. Variational formulas and approximation theorems for the first eigenvalue. Sci China, Ser A, 2001, 44(4): 409-418
|
4 |
ChenM-F. From Markov Chains to Non-equilibrium Particle Systems. 2nd ed. Berlin: Springer, 2004
|
5 |
ChenM-F. Speed of stability for birth death processes. Front Math China, 2010, 5(3): 379-515
|
6 |
DjelloutH, WuL M. Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann Inst Henri Poincaré Probab Stat, 2011, 47(2): 450-465
|
7 |
KarlinS, McGregorJ. The classification of birth-death processes. Trans Amer Math Soc, 1957, 86(2): 366-400
|
8 |
LiuW, MaY-T. Spectral gap and convex concentration inequalities for birth-death processes. Ann Inst Henri Poincaré Probab Stat, 2009, 45(1): 58-69
|
9 |
MeynS P, TweedieR L. Markov Chains and Stochastic Stability. 3rd ed. Berlin: Springer-Verlag, 1996
|
10 |
YosidaY. Functional Analysis. 6th ed. Berlin: Springer-Verlag, 1999
|
/
〈 | 〉 |